Citation: | Ruibo Lei, Zexun Wei. Exploring the Arctic Ocean under Arctic amplification[J]. Acta Oceanologica Sinica, 2020, 39(9): 1-4. doi: 10.1007/s13131-020-1642-9 |
[1] |
Barber D G, Hop H, Mundy C J, et al. 2015. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Progress in Oceanography, 139: 122–150. doi: 10.1016/j.pocean.2015.09.003
|
[2] |
Cao Xiaowei, Lu Peng, Lei Ruibo, et al. 2020. Physical and optical characteristics of sea ice in the Pacific Arctic Sector during the summer of 2018. Acta Oceanologica Sinica, 39(9): 25–37. doi: 10.1007/s13131-020-1645-6
|
[3] |
Condron A, Winsor P. 2012. Meltwater routing and the Younger Dryas. Proceedings of the National Academy of Sciences of the USA, 109(49): 19928–19933. doi: 10.1073/pnas.1207381109
|
[4] |
Ding Qinghua, Schweiger A, L’Heureux M, et al. 2017. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nature Climate Change, 7(4): 289–295. doi: 10.1038/nclimate324
|
[5] |
Ehn J K, Mundy C J, Barber D G, et al. 2011. Impact of horizontal spreading on light propagation in melt pond covered seasonal sea ice in the Canadian Arctic. Journal of Geophysical Research: Oceans, 116(C9): C00G02. doi: 10.1029/2010JC006908
|
[6] |
Fetterer F, Knowles K, Meier W N, et al. 2017. Updated daily. Sea Ice Index, Version 3. Boulder, Colorado USA: National Snow and Ice Data Center, doi: 10.7265/N5K072F8
|
[7] |
Francis J A, Vavrus S J, Cohen J. 2017. Amplified Arctic warming and mid-latitude weather: New perspectives on emerging connections. WIRS Climate Change, 8(5): e474. doi: 10.1002/wcc.474
|
[8] |
Jia Renming, Mu Xinyue, Chen Min, et al. 2020. Sources of particulate organic matter in the Chukchi and Siberian shelves: clues from carbon and nitrogen isotopes. Acta Oceanologica Sinica, 39(9): 97–13. doi: 10.1007/s13131-020-1650-9
|
[9] |
Kapsch M L, Skific N, Graversen R G, et al. 2019. Summers with low Arctic sea ice linked to persistence of spring atmospheric circulation patterns. Climate Dynamics, 52(3–4): 2497–2512. doi: 10.1007/s00382-018-4279-z
|
[10] |
Lantuit H, Pollard W H. 2008. Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada. Geomorphology, 95(1–2): 84–102. doi: 10.1016/j.geomorph.2006.07.040
|
[11] |
Lee S, Gong Tingting, Feldstein S B, et al. 2017. Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: downward infrared radiation dominates the surface fluxes. Geophysical Research Letters, 44(20): 10654–10661. doi: 10.1002/2017GL075375
|
[12] |
Lei Ruibo, Gui Dawei, Yuan Zhouli, et al. 2020. Characterization of the unprecedented polynya events north of Greenland in 2017/2018 using remote sensing and reanalysis data. Acta Oceanologica Sinica, 39(9): 5–17. doi: 10.1007/s13131-020-1643-8
|
[13] |
Lei Ruibo, Tian-Kunze X, Li Bingrui, et al. 2017. Characterization of summer Arctic sea ice morphology in the 135°–175°W sector using multi-scale methods. Cold Regions Science and Technology, 133: 108–120. doi: 10.1016/j.coldregions.2016.10.009
|
[14] |
Lei Ruibo, Xie Hongjie, Wang Jia, et al. 2015. Changes in sea ice conditions along the Arctic Northeast Passage from 1979 to 2012. Cold Regions Science and Technology, 119: 132–144. doi: 10.1016/j.coldregions.2015.08.004
|
[15] |
Li Na, Li Bingrui, Lei Ruibo, et al. 2020. Comparison of summer Arctic sea ice surface temperatures from in situ and MODIS measurements. Acta Oceanologica Sinica, 39(9): 18–24. doi: 10.1007/s13131-020-1644-7
|
[16] |
Liang Yu, Bi Haibo, Wang Yunhe, et al. 2020. Role of atmospheric factors in forcing Arctic sea ice variability. Acta Oceanologica Sinica, 39(9): 60–72. doi: 10.1007/s13131-020-1629-6
|
[17] |
Lin Feng, Yu Tao, Yu Wen, et al. 2020. Electrolytic enrichment method for tritium determination in the Arctic Ocean using liquid scintillation counter. Acta Oceanologica Sinica, 39(9): 73–77. doi: 10.1007/s13131-020-1647-4
|
[18] |
Lindsay R, Schweiger A. 2015. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere, 9(1): 269–283. doi: 10.5194/tc-9-269-2015
|
[19] |
Lobbes J M, Fitznar H P, Kattner G. 2000. Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochimica et Cosmochimica Acta, 64(17): 2973–2983. doi: 10.1016/S0016-7037(00)00409-9
|
[20] |
Moore G W K, Schweiger A, Zhang J, et al. 2018. What caused the remarkable February 2018 North Greenland Polynya?. Geophysical Research Letters, 45(24): 13342–13350. doi: 10.1029/2018GL080902
|
[21] |
Nan Liwen, Wang Xiaoping, Wang Hangzhou, et al. 2020. Feasibility study of miniature near-infrared spectrometer for the measurement of solar irradiance within Arctic snow-cover sea ice. Acta Oceanologica Sinica, 39(9): 115–124. doi: 10.1007/s13131-020-1632-y
|
[22] |
Natsuike M, Matsuno K, Hirawake T, et al. 2017. Possible spreading of toxic Alexandrium tamarense blooms on the Chukchi Sea shelf with the inflow of Pacific summer water due to climatic warming. Harmful Algae, 61: 80–86. doi: 10.1016/j.hal.2016.11.019
|
[23] |
NOAA. 2018. National Centers for Environmental Information, State of the Climate: Global Climate Report for May 2018. (2018-06) https://www.ncdc.noaa.gov/sotc/global/201805
|
[24] |
Ogi M, Rysgaard S, Barber D G. 2016. Importance of combined winter and summer Arctic Oscillation (AO) on September sea ice extent. Environmental Research Letters, 11(3): 034019. doi: 10.1088/1748-9326/11/3/034019
|
[25] |
Overland J E, Hanna E, Hanssen-Bauer I, et al. 2018. Surface air temperature in Arctic Report Card 2018. https://www.arctic.noaa.gov/Report-Card
|
[26] |
Overland J E, Wang Muyin, Walsh J E, et al. 2014. Future arctic climate changes: Adaptation and mitigation time scales. Earths Future, 2(2): 68–74. doi: 10.1002/2013EF000162
|
[27] |
Perovich D, Meier W, Tschudi M, et al. 2018. Sea ice in Arctic Report Card 2018. https://www.arctic.noaa.gov/Report-Card
|
[28] |
Redfield A C, Ketchum B H, Richards F A. 1963. The influence of organisms on the composition of sea-water. In: Hill M N, ed. The Sea. New York: Wiley Interscience, 26–77
|
[29] |
Ribeiro S, Sejr M K, Limoges A, et al. 2017. Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord: Spatial distribution and implications for palaeoenvironmental studies. Ambio, 46(S1): 106–118. doi: 10.1007/s13280-016-0894-2
|
[30] |
Rogers T S, Walsh J E, Rupp T S, et al. 2013. Future Arctic marine access: analysis and evaluation of observations, models, and projections of sea ice. The Cryosphere, 7(1): 321–332. doi: 10.5194/tc-7-321-2013
|
[31] |
Serreze M C, Barry R G. 2011. Processes and impacts of Arctic amplification: a research synthesis. Global and Planetary Change, 77(1–2): 85–96. doi: 10.1016/j.gloplacha.2011.03.004
|
[32] |
Sha Longbin, Li Dongling, Liu Yanguang, et al. 2020. Biogenic silica concentration as a marine primary productivity proxy in the Holsteinsborg Dyb, West Greenland, during the last millennium. Acta Oceanologica Sinica, 39(9): 78–85. doi: 10.1007/s13131-020-1648-3
|
[33] |
SIMIP Community. 2020. Arctic sea ice in CMIP6. Geophysical Research Letters, 47(10): e2019GL086749. doi: 10.1029/2019GL086749
|
[34] |
Tank S E, Raymond P A, Striegl R G, et al. 2012. A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean. Global Biochemical Cycles, 26(4): GB4018
|
[35] |
Tian Yanan, Han Xiao, Yin Jingwei, et al. 2020. An improved least mean square/fourth direct adaptive equalizer for under-water acoustic communications in the Arctic. Acta Oceanologica Sinica, 39(9): 133–139. doi: 10.1007/s13131-020-1653-6
|
[36] |
Wei Zexun, Chen Hongxia, Lei Ruibo, et al. 2019. Overview of the 9th Chinese National Arctic Research Expedition. Atmospheric and Oceanic Science Letters, 13(1): 1–7. doi: 10.1080/16742834.2020.1675137
|
[37] |
Xiu Yuanren, Li Zhijun, Lei Ruibo, et al. 2020. Comparisons of passive microwave remote sensing sea ice concentrations with ship-based visual observations during the CHINARE Arctic summer cruises of 2010–2018. Acta Oceanologica Sinica, 39(9): 38–49. doi: 10.1007/s13131-020-1646-50
|
[38] |
Ye Liming, Yu Xiaoguo, Zhang Weiyan, et al. 2020. Ice sheet controls on fine-grained deposition at the southern Mendeleev Ridge since the penultimate interglacial. Acta Oceanologica Sinica, 39(9): 86–95. doi: 10.1007/s13131-020-1649-2
|
[39] |
Zhang Rong. 2015. Mechanisms for low-frequency variability of summer arctic sea ice extent. Proceedings of the National Academy of Sciences of the United States of America, 112(15): 4570–4575. doi: 10.1073/pnas.1422296112
|
[40] |
Zhang Xuefeng, Yang Lu, Fu Hongli, et al. 2020. A variational successive correctionsapproach for the sea ice concentration analysis. Acta Oceanologica Sinica, 39(9): 140–154, doi: 10.1007/s13131-020-1654-5
|
[41] |
Zhao Jiechen, Shu Qi, Li Chunhua, et al. 2020. The role of bias correction on subseasonal prediction of Arctic sea ice during summer 2018. Acta Oceanologica Sinica, 39(9): 50–59. doi: 10.1007/s13131-020-1578-0
|
[42] |
Zhuang Yanpei, Jin Haiyan, Chen Jianfang, et al. 2018. Nutrient and phytoplankton dynamics driven by the Beaufort Gyre in the western Arctic Ocean during the period 2008–2014. Deep Sea Research Part I: Oceanographic Research Papers, 137: 30–37. doi: 10.1016/j.dsr.2018.05.002
|
[43] |
Zhuang Yanpei, Li Hongliang, Jin Haiyan, et al. 2020. Vertical distribution of nutrient tracers in the western Arctic Ocean and its relationship to water structure and biogeochemical processes. Acta Oceanologica Sinica, 39(9): 109–114. doi: 10.1007/s13131-020-1651-8
|