Citation: | Peng Han, Xiaoxia Yang. Big data-driven automatic generation of ship route planning in complex maritime environments[J]. Acta Oceanologica Sinica, 2020, 39(8): 113-120. doi: 10.1007/s13131-020-1638-5 |
[1] |
Altan Y C, Otay E N. 2017. Maritime traffic analysis of the strait of Istanbul based on AIS data. The Journal of Navigation, 70(6): 1367–1382. doi: 10.1017/S0373463317000431
|
[2] |
Bryant A, Cios K. 2018. RNN-DBSCAN: a density-based clustering algorithm using reverse nearest neighbor density estimates. IEEE Transactions on Knowledge and Data Engineering, 30(6): 1109–1121. doi: 10.1109/TKDE.2017.2787640
|
[3] |
Campello R J G B, Moulavi D, Zimek A, et al. 2015. Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Transactions on Knowledge Discovery from Data, 10(1): 5. doi: 10.1145/2733381
|
[4] |
Chen Jinhai, Lu Feng, Peng Guojun. 2015. A quantitative approach for delineating principal fairways of ship passages through a strait. Ocean Engineering, 103: 188–197. doi: 10.1016/j.oceaneng.2015.04.077
|
[5] |
Dijkstra E W. 1959. A note on two problems in connexion with graphs. Numerische Mathematik, 1(1): 269–271. doi: 10.1007/BF01386390
|
[6] |
Ester M, Kriegel H P, Sander J, et al. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon, USA: ACM, 226–231
|
[7] |
Futch V, Allen A. 2019. Search and rescue applications: on the need to improve ocean observing data systems in offshore or remote locations. Frontiers in Marine Science, 6: 301. doi: 10.3389/fmars.2019.00301
|
[8] |
Garcia M, Viguria A, Ollero A. 2013. Dynamic graph-search algorithm for global path planning in presence of hazardous weather. Journal of Intelligent & Robotic Systems, 69(1-4): 285–295. doi: 10.1007/s10846-012-9704-7
|
[9] |
Kumar K M, Reddy A R M. 2016. A fast DBSCAN clustering algorithm by accelerating neighbor searching using Groups method. Pattern Recognition, 58: 39–48. doi: 10.1016/j.patcog.2016.03.008
|
[10] |
Le Tixerant M, Le Guyader D, Gourmelon F, et al. 2018. How can automatic identification system (AIS) data be used for maritime spatial planning?. Ocean & Coastal Management, 166: 18–30. doi: 10.31230/osf.io/4sfcd
|
[11] |
Li Huanhuan, Liu Jingxian, Wu Kefeng, et al. 2018. Spatio-temporal vessel trajectory clustering based on data mapping and density. IEEE Access, 6: 58939–58954. doi: 10.1109/ACCESS.2018.2866364
|
[12] |
Li Yuanhui, Pan Mingyang, Wu Xian. 2007. Automatic creating algorithm of route based on dynamic grid model. Journal of Traffic and Transportation Engineering (in Chinese), 7(3): 34–39. doi: 10.3321/j.issn:1671-1637.2007.03.008
|
[13] |
Lyu Jintao, Liu Zhiqiang, Wang Na. 2018. Method for automatic ship routing based on route stack. Journal of Computer Applications (in Chinese), 38(S1): 16–19
|
[14] |
Muñoz P, Rodriguez-Moreno M. 2012. Improving efficiency in any-angle path-planning algorithms. In: Proceedings of the 6th IEEE International Conference Intelligent Systems. Sofia, Bulgaria: IEEE,
|
[15] |
Nash A, Daniel K, Koenig S, et al. 2007. Theta*: any-angle path planning on grids. In: Proceedings of the 22nd National Conference on Artificial Intelligence. Vancouver, British Columbia, Canada: AAAI
|
[16] |
Schubert E, Sander J, Ester M, et al. 2017. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Transactions on Database Systems, 42(3): 19. doi: 10.1145/3068335
|
[17] |
Svanberg M, Santén V, Hörteborn A, et al. 2019. AIS in maritime research. Marine Policy, 106: 103520. doi: 10.1016/j.marpol.2019.103520
|
[18] |
Wang Zhou, Bovik A C, Sheikh H R, et al. 2004. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
|
[19] |
Wang Zhu, Li Shujun, Zhang Lihua, et al. 2010. A method for automatic routing based on route binary tree. Geomatics and Information Science of Wuhan University (in Chinese), 35(4): 407–410. doi: 10.13203/j.whugis2010.04.015
|
[20] |
Wang Guiling, Meng Jinlong, Han Yanbo. 2019. Extraction of maritime road networks from large-scale AIS data. IEEE Access, 7: 123035–123048. doi: 10.1109/ACCESS.2019.2935794
|
[21] |
Wang Tao, Zhang Lihua, Peng Rencan, et al. 2016. A method for automatically generating the shortest distance route based on electronic navigational chart considering channel width. Hydrographic Surveying and Charting (in Chinese), 36(3): 29–31, 36. doi: 10.3969/j.issn.1671-3044.2016.03.007
|
[22] |
Wei Zhaokun, Zhou Kang, Wei Ming, et al. 2016. Ship motion pattern recognition and application based on AIS data. Journal of Shanghai Maritime University (in Chinese), 37(2): 17–22, 71. doi: 10.13340/j.jsmu.2016.02.004
|
[23] |
Yuan Guan, Xia Shixiong, Zhang Lei, et al. 2011. Trajectory clustering algorithm based on structural similarity. Journal on Communications (in Chinese), 32(9): 103–110. doi: 10.3969/j.issn.1000-436X.2011.09.015
|
[24] |
Zhan F B. 1997. Three fastest shortest path algorithms on real road networks: data structures and procedures. Journal of Geographic Information and Decision Analysis, 1(1): 70–82
|
[25] |
Zhang Shukai, Shi Guoyou, Liu Zhengjiang, et al. 2018. Data-driven based automatic maritime routing from massive AIS trajectories in the face of disparity. Ocean Engineering, 155: 240–250. doi: 10.1016/j.oceaneng.2018.02.060
|
[26] |
Zhang Lihua, Zhu Qing, Liu Yanchun, et al. 2007. A method for automatic routing based on ECDIS. Journal of Dalian Maritime University (in Chinese), 33(3): 109–112. doi: 10.3969/j.issn.1006-7736.2007.03.024
|
[27] |
Zhang Lihua, Zhu Qing, Zhang Anmin, et al. 2008. An intelligent method for the shortest routing. Acta Geodaetica et Cartographica Sinica (in Chinese), 37(1): 114–120. doi: 10.3321/j.issn:1001-1595.2008.01.020
|