Citation: | Liwen Nan, Xiaoping Wang, Hangzhou Wang, Hongliang Zhou, Ying Chen. Feasibility study of miniature near-infrared spectrometer for the measurement of solar irradiance within Arctic snow-cover sea ice[J]. Acta Oceanologica Sinica, 2020, 39(9): 115-124. doi: 10.1007/s13131-020-1632-y |
[1] |
Campbell K, Mundy C J, Barber D G, et al. 2015. Characterizing the sea ice algae chlorophyll a–snow depth relationship over Arctic spring melt using transmitted irradiance. Journal of Marine Systems, 147: 76–84. doi: 10.1016/j.jmarsys.2014.01.008
|
[2] |
Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35(1): L01703
|
[3] |
Ehn J K, Papakyriakou T N, Barber D G. 2008. Inference of optical properties from radiation profiles within melting landfast sea ice. Journal of Geophysical Research: Oceans, 113(C9): C09024
|
[4] |
Ehn J K, Mundy C J, Barber D G, et al. 2011. Impact of horizontal spreading on light propagation in melt pond covered seasonal sea ice in the Canadian Arctic. Journal of Geophysical Research: Oceans, 116(C9): C00G02
|
[5] |
Feister U, Grewe R. 1995. Spectral albedo measurements in the UV and visible region over different types of surfaces. Photochemistry and Photobiology, 62(4): 736–744. doi: 10.1111/j.1751-1097.1995.tb08723.x
|
[6] |
Frey K E, Perovich D K, Light B. 2011. The spatial distribution of solar radiation under a melting Arctic sea ice cover. Geophysical Research Letters, 38(22): L22501
|
[7] |
Grenfell T C, Light B, Perovich D K. 2006. Spectral transmission and implications for the partitioning of shortwave radiation in arctic sea ice. Annals of Glaciology, 44: 1–6
|
[8] |
Grenfell T C, Perovich D K. 1981. Radiation absorption coefficients of polycrystalline ice from 400–1400 nm. Journal of geophysical research, 86(C8): 7447-7450
|
[9] |
Kuusk J. 2011. Dark signal temperature dependence correction method for miniature spectrometer modules. Journal of Sensors, 2011: Article ID 608157
|
[10] |
Lei Ruibo, Leppäranta M, Erm A, et al. 2011. Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009. Estonian Journal of Earth Sciences, 60(1): 50. doi: 10.3176/earth.2011.1.05
|
[11] |
Lei Ruibo, Zhang Zhanhai, Matero I, et al. 2012. Reflection and transmission of irradiance by snow and sea ice in the central Arctic Ocean in summer 2010. Polar Research, 31(1): 17325. doi: 10.3402/polar.v31i0.17325
|
[12] |
Light B, Grenfell T C, Perovich D K. 2008. Transmission and absorption of solar radiation by Arctic sea ice during the melt season. Journal of Geophysical Research: Oceans, 113(C3): 03023. doi: 10.1029/2006JC003977
|
[13] |
Maslanik J A, Fowler C, Stroeve J, et al. 2007. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophysical Research Letters, 34(24): L24501. doi: 10.1029/2007GL032043
|
[14] |
Maslanik J, Stroeve J, Fowler C, et al. 2011. Distribution and trends in Arctic sea ice age through spring 2011. Geophysical Research Letters, 38(13): L13502
|
[15] |
Min M, Lee W S, Burks T F, et al. 2008. Design of a hyperspectral nitrogen sensing system for orange leaves. Computers and Electronics in Agriculture, 63(2): 215–226. doi: 10.1016/j.compag.2008.03.004
|
[16] |
Nicolaus M, Hudson S R, Gerland S, et al. 2010. A modern concept for autonomous and continuous measurements of spectral albedo and transmittance of sea ice. Cold Regions Science and Technology, 62(1): 14–28. doi: 10.1016/j.coldregions.2010.03.001
|
[17] |
Nicolaus M, Katlein C. 2013. Mapping radiation transfer through sea ice using a remotely operated vehicle (ROV). The Cryosphere, 7(3): 763–777. doi: 10.5194/tc-7-763-2013
|
[18] |
Palmer M A, Saenz B T, Arrigo K R. 2014. Impacts of sea ice retreat, thinning, and melt-pond proliferation on the summer phytoplankton bloom in the Chukchi Sea, Arctic Ocean. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 105: 85–104. doi: 10.1016/j.dsr2.2014.03.016
|
[19] |
Perovich D K, Grenfell T C, Light B, et al. 2002. Seasonal evolution of the albedo of multiyear Arctic sea ice. Journal of Geophysical Research: Oceans, 107(C10): SHE 20-1–SHE 20-13
|
[20] |
Perovich D K, Jones K F, Light B, et al. 2011. Solar partitioning in a changing Arctic sea-ice cover. Annals of Glaciology, 52(57): 192–196. doi: 10.3189/172756411795931543
|
[21] |
Pirazzini R, Vihma T, Granskog M A, et al. 2006. Surface albedo measurements over sea ice in the Baltic Sea during the spring snowmelt period. Annals of Glaciology, 44: 7–14. doi: 10.3189/172756406781811565
|
[22] |
Riihelä A, Manninen T, Laine V. 2013. Observed changes in the albedo of the Arctic sea-ice zone for the period 1982–2009. Nature Climate Change, 3(10): 895–898. doi: 10.1038/nclimate1963
|
[23] |
Serreze M C, Holland M M, Stroeve J. 2007. Perspectives on the Arctic's shrinking sea-ice cover. Science, 315(5818): 1533–1536. doi: 10.1126/science.1139426
|
[24] |
Stroeve J C, Serreze M C, Holland M M, et al. 2012. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110(3–4): 1005–1027
|
[25] |
Treffeisen R, Krejci R, Ström J, et al. 2007. Humidity observations in the Arctic troposphere over Ny-Ålesund, Svalbard based on 15 years of radiosonde data. Atmospheric Chemistry and Physics, 7(10): 2721–2732. doi: 10.5194/acp-7-2721-2007
|
[26] |
Wang Hangzhou, Chen Ying, Song Hong, et al. 2014. A fiber optic spectrometry system for measuring irradiance distributions in sea ice environments. Journal of Atmospheric and Oceanic Technology, 31(12): 2844–2857. doi: 10.1175/JTECH-D-14-00108.1
|