Citation: | Zhenya Song, Hailong Liu, Xingrong Chen. Eastern equatorial Pacific SST seasonal cycle in global climate models: from CMIP5 to CMIP6[J]. Acta Oceanologica Sinica, 2020, 39(7): 50-60. doi: 10.1007/s13131-020-1623-z |
[1] |
Covey C, Abe-Ouchi A, Boer G J, et al. 2000. The seasonal cycle in coupled ocean-atmosphere general circulation models. Climate Dynamics, 16(10–11): 775–787. doi: 10.1007/s003820000081
|
[2] |
De Szoeke S P, Xie Shangping. 2008. The tropical eastern Pacific seasonal cycle: Assessment of errors and mechanisms in IPCC AR4 coupled ocean-atmosphere general circulation models. Journal of Climate, 21(11): 2573–2590. doi: 10.1175/2007JCLI1975.1
|
[3] |
DeWitt D G, Schneider E K. 1999. The processes determining the Annual Cycle of Equatorial Sea surface temperature: a coupled general circulation model perspective. Monthly Weather Review, 127(3): 381–395. doi: 10.1175/1520-0493(1999)127<0381:TPDTAC>2.0.CO;2
|
[4] |
Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5): 1937–1958. doi: 10.5194/gmd-9-1937-2016
|
[5] |
Giese B S, Carton J A. 1994. The seasonal cycle in coupled ocean-atmosphere model. Journal of Climate, 7(8): 1208–1217. doi: 10.1175/1520-0442(1994)007<1208:TSCICO>2.0.CO;2
|
[6] |
Huang Boyin, Thorne P W, Smith T M, et al. 2016. Further exploring and quantifying uncertainties for Extended Reconstructed Sea Surface Temperature (ERSST) Version 4 (v4). Journal of Climate, 29(9): 3119–3142. doi: 10.1175/JCLI-D-15-0430.1
|
[7] |
Jang C J, Park J, Park T, et al. 2011. Response of the ocean mixed layer depth to global warming and its impact on primary production: a case for the North Pacific Ocean. ICES Journal of Marine Science, 68(6): 996–1007. doi: 10.1093/icesjms/fsr064
|
[8] |
Latif M, Sperber K, Arblaster J, et al. 2001. ENSIP: the El Nino simulation intercomparison project. Climate Dynamics, 18(3/4): 255–276. doi: 10.1007/s003820100174
|
[9] |
Manabe S, Bryan K. 1969. Climate calculations with a combined ocean-atmosphere model. Journal of the Atmospheric Sciences, 26(4): 786–789. doi: 10.1175/1520-0469(1969)026<0786:CCWACO>2.0.CO;2
|
[10] |
Mechoso C R, Robertson A W, Barth N, et al. 1995. The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models. Monthly Weather Review, 123(9): 2825–2838. doi: 10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2
|
[11] |
Mitchell T P, Wallace J M. 1992. The annual cycle in equatorial convection and sea surface temperature. Journal of Climate, 5(10): 1140–1156. doi: 10.1175/1520-0442(1992)005<1140:TACIEC>2.0.CO;2
|
[12] |
Neelin J D, Jin Feifei, Syu H H. 2000. Variations in ENSO phase locking. Journal of Climate, 13(14): 2570–2590. doi: 10.1175/1520-0442(2000)013<2570:VIEPL>2.0.CO;2
|
[13] |
Nigam S, Chao Yi. 1996. Evolution dynamics of tropical ocean-atmosphere annual cycle variability. Journal of Climate, 9(12): 3187–3205. doi: 10.1175/1520-0442(1996)009<3187:EDOTOA>2.0.CO;2
|
[14] |
Song Z Y, Liu H L, Wang C Z, et al. 2014. Evaluation of the eastern equatorial Pacific SST seasonal cycle in CMIP5 models. Ocean Science, 10(5): 837–843. doi: 10.5194/os-10-837-2014
|
[15] |
Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4): 485–498. doi: 10.1175/BAMS-D-11-00094.1
|
[16] |
Xie Shangping. 1994. On the genesis of the equatorial annual cycle. Journal of Climate, 7(12): 2008–2013. doi: 10.1175/1520-0442(1994)007<2008:OTGOTE>2.0.CO;2
|
[17] |
Xie Shangping. 2004. The shape of continents, air-sea interaction, and the rising branch of the Hadley circulation. In: Diaz H F, Bradley R S, eds. The Hadley Circulation: Present, Past and Future. Dordrecht: Springer, 121–152,
|
[18] |
Xie Shangping, Miyama T, Wang Yuqing, et al. 2007. A regional ocean-atmosphere model for eastern Pacific climate: toward reducing tropical biases. Journal of Climate, 20(8): 1504–1522. doi: 10.1175/JCLI4080.1
|
1. | Bali Madhu, Naresh Krishna Vissa, Gopinadh Konda, et al. Assessment of hydrographic features in OMIP2 models in the Tropical Indian Ocean. Ocean Dynamics, 2025, 75(2) doi:10.1007/s10236-025-01664-9 | |
2. | Janeet Sanabria, Raphael Neukom, Alan Llacza, et al. Representation of extreme El Niño events and associated atmospheric moisture flux divergence in the central-eastern tropical Pacific in a CMIP6 model ensemble. Weather and Climate Extremes, 2025, 47: 100746. doi:10.1016/j.wace.2025.100746 | |
3. | Song Jiang, Congwen Zhu, Ning Jiang. Impacts of the annual cycle of background SST in the tropical Pacific on the phase and amplitude of ENSO. Atmospheric and Oceanic Science Letters, 2025, 18(1): 100496. doi:10.1016/j.aosl.2024.100496 | |
4. | Junjie Huang, Lijuan Li, Yujun He, et al. Evaluation and attribution of shortwave feedbacks to ENSO in CMIP6 models. Climate Dynamics, 2024. doi:10.1007/s00382-024-07190-6 | |
5. | Ahmad Bayhaqi, Jeseon Yoo, Chan Joo Jang, et al. Near-Future Projection of Sea Surface Winds in Northwest Pacific Ocean Based on a CMIP6 Multi-Model Ensemble. Atmosphere, 2024, 15(3): 386. doi:10.3390/atmos15030386 | |
6. | Yangyan Cheng, Min Zhang, Zhenya Song, et al. A quantitative analysis of marine heatwaves in response to rising sea surface temperature. Science of The Total Environment, 2023, 881: 163396. doi:10.1016/j.scitotenv.2023.163396 | |
7. | Yan Li, Mengying Du, Juan Feng, et al. Relationships between the Hadley circulation and tropical sea surface temperature with different meridional structures simulated in CMIP6 models. Frontiers in Marine Science, 2023, 10 doi:10.3389/fmars.2023.1145509 | |
8. | Song Jiang, Congwen Zhu, Zeng-Zhen Hu, et al. Triple-dip La Niña in 2020–23: understanding the role of the annual cycle in tropical Pacific SST. Environmental Research Letters, 2023, 18(8): 084002. doi:10.1088/1748-9326/ace274 | |
9. | Michael Sigmond, James Anstey, Vivek Arora, et al. Improvements in the Canadian Earth System Model (CanESM) through systematic model analysis: CanESM5.0 and CanESM5.1. Geoscientific Model Development, 2023, 16(22): 6553. doi:10.5194/gmd-16-6553-2023 | |
10. | Rubén Varela, Maite DeCastro, Laura Rodriguez-Diaz, et al. Examining the Ability of CMIP6 Models to Reproduce the Upwelling SST Imprint in the Eastern Boundary Upwelling Systems. Journal of Marine Science and Engineering, 2022, 10(12): 1970. doi:10.3390/jmse10121970 | |
11. | Bryam Orihuela-Pinto, Agus Santoso, Matthew H. England, et al. Reduced ENSO Variability due to a Collapsed Atlantic Meridional Overturning Circulation. Journal of Climate, 2022, 35(16): 5307. doi:10.1175/JCLI-D-21-0293.1 | |
12. | Jun‐Chao Yang, Zhen Lv, Ingo Richter, et al. Inter‐Model Spread of North Tropical Atlantic Trans‐Basin Effect Substantially Biases Tropical Pacific Sea Surface Temperature Multiyear Prediction. Geophysical Research Letters, 2022, 49(15) doi:10.1029/2022GL098620 | |
13. | Meiyi Hou, Youmin Tang. Recent progress in simulating two types of ENSO – from CMIP5 to CMIP6. Frontiers in Marine Science, 2022, 9 doi:10.3389/fmars.2022.986780 | |
14. | Adrián Fernández-Sánchez, José Úbeda, Luis Miguel Tanarro, et al. Climate Patterns and Their Influence in the Cordillera Blanca, Peru, Deduced from Spectral Analysis Techniques. Atmosphere, 2022, 13(12): 2107. doi:10.3390/atmos13122107 | |
15. | Zhanpeng Zhuang, Quanan Zheng, Yongzeng Yang, et al. Improved upper-ocean thermodynamical structure modeling with combined effects of surface waves and M2 internal tides on vertical mixing: a case study for the Indian Ocean. Geoscientific Model Development, 2022, 15(18): 7221. doi:10.5194/gmd-15-7221-2022 | |
16. | Minghong Liu, Hong-Li Ren, Renhe Zhang, et al. ENSO phase-locking behavior in climate models: from CMIP5 to CMIP6. Environmental Research Communications, 2021, 3(3): 031004. doi:10.1088/2515-7620/abf295 | |
17. | Yan Du, Xiaolong Dong, Xingwei Jiang, et al. Ocean surface current multiscale observation mission (OSCOM): Simultaneous measurement of ocean surface current, vector wind, and temperature. Progress in Oceanography, 2021, 193: 102531. doi:10.1016/j.pocean.2021.102531 | |
18. | Andrés Navarro, Andrés Merino. Precipitation Science. doi:10.1016/B978-0-12-822973-6.00013-5 |