Zhenya Song, Hailong Liu, Xingrong Chen. Eastern equatorial Pacific SST seasonal cycle in global climate models: from CMIP5 to CMIP6[J]. Acta Oceanologica Sinica, 2020, 39(7): 50-60. doi: 10.1007/s13131-020-1623-z
Citation: Zhenya Song, Hailong Liu, Xingrong Chen. Eastern equatorial Pacific SST seasonal cycle in global climate models: from CMIP5 to CMIP6[J]. Acta Oceanologica Sinica, 2020, 39(7): 50-60. doi: 10.1007/s13131-020-1623-z

Eastern equatorial Pacific SST seasonal cycle in global climate models: from CMIP5 to CMIP6

doi: 10.1007/s13131-020-1623-z
Funds:  The National Key R&D Program of China under contract No. 2016YFA0602200; the Basic Scientific Fund for National Public Research Institute of China under contract No. 2016S03; the grant of Qingdao National Laboratory for Marine Science and Technology under contract Nos 2017ASTCP-ES04 and QNLM20160RP0101; the National Natural Science Foundation of China under contract No. 41776019; the Shanghai Natural Science Foundation under contract No. 16ZR1416200; the China-Korea Cooperation Project on Northwestern Pacific Climate Change and its Prediction.
More Information
  • Corresponding author: E-mail: luckychen@nmefc.cn
  • Received Date: 2019-08-15
  • Accepted Date: 2019-09-27
  • Available Online: 2020-12-28
  • Publish Date: 2020-07-25
  • The sea surface temperature (SST) seasonal cycle in the eastern equatorial Pacific (EEP) plays an important role in the El Niño–Southern Oscillation (ENSO) phenomenon. However, the reasonable simulation of SST seasonal cycle in the EEP is still a challenge for climate models. In this paper, we evaluated the performance of 17 CMIP6 climate models in simulating the seasonal cycle in the EEP and compared them with 43 CMIP5 climate models. In general, only CESM2 and SAM0-UNICON are able to successfully capture the annual mean SST characteristics, and the results showed that CMIP6 models have no fundamental improvement in the model annual mean bias. For the seasonal cycle, 14 out of 17 climate models are able to represent the major characteristics of the observed SST annual evolution. In spring, 12 models capture the 1–2 months leading the eastern equatorial Pacific region 1 (EP1; 5°S–5°N, 110°–85°W) against the eastern equatorial Pacific region 2 (EP2; 5°S–5°N, 140°–110°W). In autumn, only two models, GISS-E2-G and SAM0-UNICON, correctly show that the EP1 and EP2 SSTs vary in phase. For the CMIP6 MME SST simulation in EP1, both the cold bias along the equator in the warm phase and the warm bias in the cold phase lead to a weaker annual SST cycle in the CGCMs, which is similar to the CMIP5 results. However, both the seasonal cold bias and warm bias are considerably decreased for CMIP6, which leads the annual SST cycle to more closely reflect the observation. For the CMIP6 MME SST simulation in EP2, the amplitude is similar to the observed value due to the quasi-constant cold bias throughout the year, although the cold bias is clearly improved after August compared with CMIP5 models. Overall, although SAM0-UNICON successfully captured the seasonal cycle characteristics in the EEP and the improvement from CMIP5 to CMIP6 in simulating EEP SST is clear, the fundamental climate models simulated biases still exist.
  • [1]
    Covey C, Abe-Ouchi A, Boer G J, et al. 2000. The seasonal cycle in coupled ocean-atmosphere general circulation models. Climate Dynamics, 16(10–11): 775–787. doi: 10.1007/s003820000081
    [2]
    De Szoeke S P, Xie Shangping. 2008. The tropical eastern Pacific seasonal cycle: Assessment of errors and mechanisms in IPCC AR4 coupled ocean-atmosphere general circulation models. Journal of Climate, 21(11): 2573–2590. doi: 10.1175/2007JCLI1975.1
    [3]
    DeWitt D G, Schneider E K. 1999. The processes determining the Annual Cycle of Equatorial Sea surface temperature: a coupled general circulation model perspective. Monthly Weather Review, 127(3): 381–395. doi: 10.1175/1520-0493(1999)127<0381:TPDTAC>2.0.CO;2
    [4]
    Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5): 1937–1958. doi: 10.5194/gmd-9-1937-2016
    [5]
    Giese B S, Carton J A. 1994. The seasonal cycle in coupled ocean-atmosphere model. Journal of Climate, 7(8): 1208–1217. doi: 10.1175/1520-0442(1994)007<1208:TSCICO>2.0.CO;2
    [6]
    Huang Boyin, Thorne P W, Smith T M, et al. 2016. Further exploring and quantifying uncertainties for Extended Reconstructed Sea Surface Temperature (ERSST) Version 4 (v4). Journal of Climate, 29(9): 3119–3142. doi: 10.1175/JCLI-D-15-0430.1
    [7]
    Jang C J, Park J, Park T, et al. 2011. Response of the ocean mixed layer depth to global warming and its impact on primary production: a case for the North Pacific Ocean. ICES Journal of Marine Science, 68(6): 996–1007. doi: 10.1093/icesjms/fsr064
    [8]
    Latif M, Sperber K, Arblaster J, et al. 2001. ENSIP: the El Nino simulation intercomparison project. Climate Dynamics, 18(3/4): 255–276. doi: 10.1007/s003820100174
    [9]
    Manabe S, Bryan K. 1969. Climate calculations with a combined ocean-atmosphere model. Journal of the Atmospheric Sciences, 26(4): 786–789. doi: 10.1175/1520-0469(1969)026<0786:CCWACO>2.0.CO;2
    [10]
    Mechoso C R, Robertson A W, Barth N, et al. 1995. The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models. Monthly Weather Review, 123(9): 2825–2838. doi: 10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2
    [11]
    Mitchell T P, Wallace J M. 1992. The annual cycle in equatorial convection and sea surface temperature. Journal of Climate, 5(10): 1140–1156. doi: 10.1175/1520-0442(1992)005<1140:TACIEC>2.0.CO;2
    [12]
    Neelin J D, Jin Feifei, Syu H H. 2000. Variations in ENSO phase locking. Journal of Climate, 13(14): 2570–2590. doi: 10.1175/1520-0442(2000)013<2570:VIEPL>2.0.CO;2
    [13]
    Nigam S, Chao Yi. 1996. Evolution dynamics of tropical ocean-atmosphere annual cycle variability. Journal of Climate, 9(12): 3187–3205. doi: 10.1175/1520-0442(1996)009<3187:EDOTOA>2.0.CO;2
    [14]
    Song Z Y, Liu H L, Wang C Z, et al. 2014. Evaluation of the eastern equatorial Pacific SST seasonal cycle in CMIP5 models. Ocean Science, 10(5): 837–843. doi: 10.5194/os-10-837-2014
    [15]
    Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4): 485–498. doi: 10.1175/BAMS-D-11-00094.1
    [16]
    Xie Shangping. 1994. On the genesis of the equatorial annual cycle. Journal of Climate, 7(12): 2008–2013. doi: 10.1175/1520-0442(1994)007<2008:OTGOTE>2.0.CO;2
    [17]
    Xie Shangping. 2004. The shape of continents, air-sea interaction, and the rising branch of the Hadley circulation. In: Diaz H F, Bradley R S, eds. The Hadley Circulation: Present, Past and Future. Dordrecht: Springer, 121–152,
    [18]
    Xie Shangping, Miyama T, Wang Yuqing, et al. 2007. A regional ocean-atmosphere model for eastern Pacific climate: toward reducing tropical biases. Journal of Climate, 20(8): 1504–1522. doi: 10.1175/JCLI4080.1
  • Relative Articles

  • Cited by

    Periodical cited type(18)

    1. Bali Madhu, Naresh Krishna Vissa, Gopinadh Konda, et al. Assessment of hydrographic features in OMIP2 models in the Tropical Indian Ocean. Ocean Dynamics, 2025, 75(2) doi:10.1007/s10236-025-01664-9
    2. Janeet Sanabria, Raphael Neukom, Alan Llacza, et al. Representation of extreme El Niño events and associated atmospheric moisture flux divergence in the central-eastern tropical Pacific in a CMIP6 model ensemble. Weather and Climate Extremes, 2025, 47: 100746. doi:10.1016/j.wace.2025.100746
    3. Song Jiang, Congwen Zhu, Ning Jiang. Impacts of the annual cycle of background SST in the tropical Pacific on the phase and amplitude of ENSO. Atmospheric and Oceanic Science Letters, 2025, 18(1): 100496. doi:10.1016/j.aosl.2024.100496
    4. Junjie Huang, Lijuan Li, Yujun He, et al. Evaluation and attribution of shortwave feedbacks to ENSO in CMIP6 models. Climate Dynamics, 2024. doi:10.1007/s00382-024-07190-6
    5. Ahmad Bayhaqi, Jeseon Yoo, Chan Joo Jang, et al. Near-Future Projection of Sea Surface Winds in Northwest Pacific Ocean Based on a CMIP6 Multi-Model Ensemble. Atmosphere, 2024, 15(3): 386. doi:10.3390/atmos15030386
    6. Yangyan Cheng, Min Zhang, Zhenya Song, et al. A quantitative analysis of marine heatwaves in response to rising sea surface temperature. Science of The Total Environment, 2023, 881: 163396. doi:10.1016/j.scitotenv.2023.163396
    7. Yan Li, Mengying Du, Juan Feng, et al. Relationships between the Hadley circulation and tropical sea surface temperature with different meridional structures simulated in CMIP6 models. Frontiers in Marine Science, 2023, 10 doi:10.3389/fmars.2023.1145509
    8. Song Jiang, Congwen Zhu, Zeng-Zhen Hu, et al. Triple-dip La Niña in 2020–23: understanding the role of the annual cycle in tropical Pacific SST. Environmental Research Letters, 2023, 18(8): 084002. doi:10.1088/1748-9326/ace274
    9. Michael Sigmond, James Anstey, Vivek Arora, et al. Improvements in the Canadian Earth System Model (CanESM) through systematic model analysis: CanESM5.0 and CanESM5.1. Geoscientific Model Development, 2023, 16(22): 6553. doi:10.5194/gmd-16-6553-2023
    10. Rubén Varela, Maite DeCastro, Laura Rodriguez-Diaz, et al. Examining the Ability of CMIP6 Models to Reproduce the Upwelling SST Imprint in the Eastern Boundary Upwelling Systems. Journal of Marine Science and Engineering, 2022, 10(12): 1970. doi:10.3390/jmse10121970
    11. Bryam Orihuela-Pinto, Agus Santoso, Matthew H. England, et al. Reduced ENSO Variability due to a Collapsed Atlantic Meridional Overturning Circulation. Journal of Climate, 2022, 35(16): 5307. doi:10.1175/JCLI-D-21-0293.1
    12. Jun‐Chao Yang, Zhen Lv, Ingo Richter, et al. Inter‐Model Spread of North Tropical Atlantic Trans‐Basin Effect Substantially Biases Tropical Pacific Sea Surface Temperature Multiyear Prediction. Geophysical Research Letters, 2022, 49(15) doi:10.1029/2022GL098620
    13. Meiyi Hou, Youmin Tang. Recent progress in simulating two types of ENSO – from CMIP5 to CMIP6. Frontiers in Marine Science, 2022, 9 doi:10.3389/fmars.2022.986780
    14. Adrián Fernández-Sánchez, José Úbeda, Luis Miguel Tanarro, et al. Climate Patterns and Their Influence in the Cordillera Blanca, Peru, Deduced from Spectral Analysis Techniques. Atmosphere, 2022, 13(12): 2107. doi:10.3390/atmos13122107
    15. Zhanpeng Zhuang, Quanan Zheng, Yongzeng Yang, et al. Improved upper-ocean thermodynamical structure modeling with combined effects of surface waves and M2 internal tides on vertical mixing: a case study for the Indian Ocean. Geoscientific Model Development, 2022, 15(18): 7221. doi:10.5194/gmd-15-7221-2022
    16. Minghong Liu, Hong-Li Ren, Renhe Zhang, et al. ENSO phase-locking behavior in climate models: from CMIP5 to CMIP6. Environmental Research Communications, 2021, 3(3): 031004. doi:10.1088/2515-7620/abf295
    17. Yan Du, Xiaolong Dong, Xingwei Jiang, et al. Ocean surface current multiscale observation mission (OSCOM): Simultaneous measurement of ocean surface current, vector wind, and temperature. Progress in Oceanography, 2021, 193: 102531. doi:10.1016/j.pocean.2021.102531
    18. Andrés Navarro, Andrés Merino. Precipitation Science. doi:10.1016/B978-0-12-822973-6.00013-5

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 29.2 %FULLTEXT: 29.2 %META: 68.4 %META: 68.4 %PDF: 2.4 %PDF: 2.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 1.3 %其他: 1.3 %Australia: 0.4 %Australia: 0.4 %China: 15.9 %China: 15.9 %France: 0.1 %France: 0.1 %Germany: 0.4 %Germany: 0.4 %India: 0.9 %India: 0.9 %Italy: 0.4 %Italy: 0.4 %Japan: 1.6 %Japan: 1.6 %Kazakhstan: 0.1 %Kazakhstan: 0.1 %Korea Republic of: 3.8 %Korea Republic of: 3.8 %Netherlands: 0.5 %Netherlands: 0.5 %Peru: 0.8 %Peru: 0.8 %Romania: 0.7 %Romania: 0.7 %Russian Federation: 4.3 %Russian Federation: 4.3 %Spain: 0.5 %Spain: 0.5 %Taiwan, China: 1.3 %Taiwan, China: 1.3 %Thailand: 0.1 %Thailand: 0.1 %United States: 66.6 %United States: 66.6 %其他AustraliaChinaFranceGermanyIndiaItalyJapanKazakhstanKorea Republic ofNetherlandsPeruRomaniaRussian FederationSpainTaiwan, ChinaThailandUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (569) PDF downloads(18) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return