Volume 39 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
Jian Shi, Wenjing Zhang, Xueyan Zhang, Jingdong Liu, Zhenyu Liu. Parameterization of the sea spray generation function with whitecap coverage[J]. Acta Oceanologica Sinica, 2020, 39(8): 24-33. doi: 10.1007/s13131-020-1618-9
Citation: Jian Shi, Wenjing Zhang, Xueyan Zhang, Jingdong Liu, Zhenyu Liu. Parameterization of the sea spray generation function with whitecap coverage[J]. Acta Oceanologica Sinica, 2020, 39(8): 24-33. doi: 10.1007/s13131-020-1618-9

Parameterization of the sea spray generation function with whitecap coverage

doi: 10.1007/s13131-020-1618-9
Funds:  The National Natural Science Foundation of China under contract No. 41676014.
More Information
  • Corresponding author: E-mail: shijian.mil@163.com
  • Received Date: 2020-03-21
  • Accepted Date: 2020-05-20
  • Available Online: 2020-12-28
  • Publish Date: 2020-08-25
  • Sea spray droplets are produced by waves breaking on the sea surface, and they vary the transfer of energy between the atmosphere and ocean. The sea spray generation function (SSGF) is generally considered as a function of the initial radius of the spray droplets and the wind speed. However, ocean waves always exist at the air-sea interface, so it is not reasonable to consider only the effect of sea surface winds while ignoring the effects of ocean waves. Whitecap coverage is an important characteristic parameter of breaking waves, and researchers believe that this parameter is related to both wave state and wind speed. In this paper, the SSGF is parameterized by the whitecap coverage, and a new SSGF describing different droplet radii is organically integrated based on the whitecap coverage parameter. Then, with the relationship between the whitecap coverage and wave state, the influence of ocean waves on the SSGF for different wave states was analyzed by using observational data in the laboratory. The results show that the new SSGF that considers wave effects can reasonably describe the droplet generation process under different wave state conditions.
  • loading
  • [1]
    Andreas E L. 1992. Sea spray and the turbulent air-sea heat fluxes. Journal of Geophysical Research: Oceans, 97(C7): 11429–11441. doi: 10.1029/92JC00876
    [2]
    Andreas E L. 1998. A new sea spray generation function for wind speeds up to 32 m·s−1. Journal of Physical Oceanography, 28(11): 2175–2184. doi: 10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO;2
    [3]
    Andreas E L. 2002. A review of the sea spray generation function for the open ocean. In: Perrie W, ed. Atmosphere–Ocean Interactions. Southampton: WIT Press, 1–46
    [4]
    Andreas E L. 2004. Spray stress revisited. Journal of Physical Oceanography, 34(6): 1429–1440. doi: 10.1175/1520-0485(2004)034<1429:SSR>2.0.CO;2
    [5]
    Andreas E L, Edson J B, Monahan E C, et al. 1995. The spray contribution to net evaporation from the sea: a review of recent progress. Boundary-Layer Meteorology, 72(1–2): 3–52
    [6]
    Barthel S, Tegen I, Wolke R. 2019. Do new sea spray aerosol source functions improve the results of a regional aerosol model?. Atmospheric Environment, 198: 265–278. doi: 10.1016/j.atmosenv.2018.10.016
    [7]
    Callaghan A H. 2013. An improved whitecap timescale for sea spray aerosol production flux modeling using the discrete whitecap method. Journal of Geophysical Research: Atmospheres, 118(17): 9997–10010. doi: 10.1002/jgrd.50768
    [8]
    Fairall C W, Banner M L, Peirson W L, et al. 2009. Investigation of the physical scaling of sea spray spume droplet production. Journal of Geophysical Research: Oceans, 114(C10): C10001. doi: 10.1029/2008JC004918
    [9]
    Fairall C W, Kepert J D, Holland G J. 1994. The effect of sea spray on surface energy transports over the ocean. The Global Atmosphere and Ocean System, 2: 121–142
    [10]
    Gong S L. 2003. A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Global Biogeochemical Cycles, 17(4): 1097
    [11]
    Lafon C, Piazzola J, Forget P, et al. 2007. Whitecap coverage in coastal environment for steady and unsteady wave field conditions. Journal of Marine Systems, 66(1–4): 38–46
    [12]
    Laussac S, Piazzola J, Tedeschi G, et al. 2018. Development of a fetch dependent sea-spray source function using aerosol concentration measurements in the North-Western Mediterranean. Atmospheric Environment, 193: 177–189. doi: 10.1016/j.atmosenv.2018.09.009
    [13]
    Lewis E R, Schwartz S E. 2004. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements and Models-A Critical Review. Washington: American Geophysical Union
    [14]
    Ling S C, Saad A I, Kao T W. 1980. Microdroplets and transport of moisture from ocean. Journal of the Engineering Mechanics Division, 106(6): 1327–1339
    [15]
    Liu Bin, Guan Changlong, Xie Lian. 2012. The wave state and sea spray related parameterization of wind stress applicable from low to extreme winds. Journal of Geophysical Research: Oceans, 117(C11): C00J22
    [16]
    Liu Bin, Liu Huiqing, Xie Lian, et al. 2011. A coupled atmosphere–wave–ocean modeling system: Simulation of the intensity of an idealized tropical cyclone. Monthly Weather Review, 139(1): 132–152. doi: 10.1175/2010MWR3396.1
    [17]
    Monahan E C, Muircheartaigh I Ó. 1980. Optimal power-law description of oceanic whitecap coverage dependence on wind speed. Journal of Physical Oceanography, 10(12): 2094–2099. doi: 10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2
    [18]
    Monahan E C, Spiel D E, Davidson K L. 1986. A model of marine aerosol generation via whitecaps and wave disruption. In: Monahan E C, Niocaill G M, eds. Oceanic Whitecaps. Dordrecht: Springer, 167–174.
    [19]
    Mueller J A, Veron F. 2009. A sea state-dependent spume generation function. Journal of Physical Oceanography, 39(9): 2363–2372. doi: 10.1175/2009JPO4113.1
    [20]
    Norris S J, Brooks I M, Moat B I, et al. 2013a. Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean. Ocean Science, 9(1): 133–145
    [21]
    Norris S J, Brooks I M, Salisbury D J. 2013b. A wave roughness Reynolds number parameterization of the sea spray source flux. Geophysical Research Letters, 40(16): 4415–4419
    [22]
    Ovadnevaite J, Manders A, De Leeuw G, et al. 2014. A sea spray aerosol flux parameterization encapsulating wave state. Atmospheric Chemistry and Physics, 14(4): 1837–1852. doi: 10.5194/acp-14-1837-2014
    [23]
    Ren Danqin, Hua Feng, Yang Yongzeng, et al. 2016. The improved model of estimating global whitecap coverage based on satellite data. Acta Oceanologica Sinica, 35(5): 66–72. doi: 10.1007/s13131-016-0848-3
    [24]
    Rizza U, Canepa E, Ricchi A, et al. 2018. Influence of wave state and sea spray on the roughness length: feedback on medicanes. Atmosphere, 9(8): 301. doi: 10.3390/atmos9080301
    [25]
    Shao Weizeng, Sheng Yexin, Li Huan, et al. 2018. Analysis of wave distribution simulated by WAVEWATCH-III model in typhoons passing Beibu Gulf, China. Atmosphere, 9(7): 265. doi: 10.3390/atmos9070265
    [26]
    Sheng Yexin, Shao Weizeng, Li Shuiqing, et al. 2019. Evaluation of typhoon waves simulated by WaveWatch-III model in shallow waters around Zhoushan islands. Journal of Ocean University of China, 18(2): 365–375. doi: 10.1007/s11802-019-3829-2
    [27]
    Shi Jian, Zhao Dongliang, Li Xunqiang, et al. 2009. New wave-dependent formulae for sea spray flux at air-sea interface. Journal of Hydrodynamics, 21(4): 573–581. doi: 10.1016/S1001-6058(08)60186-9
    [28]
    Shi Jian, Zhong Zhong, Li Ruijie, et al. 2011. Dependence of sea surface drag Coefficient on wind-wave Parameters. Acta Oceanologica Sinica, 30(2): 14–24. doi: 10.1007/s13131-011-0101-z
    [29]
    Shi Jian, Zhong Zhong, Li Xunqiang, et al. 2016. The influence of wave state and sea spray on drag coefficient from low to high wind speeds. Journal of Ocean University of China, 15(1): 41–49. doi: 10.1007/s11802-016-2655-z
    [30]
    Smith M H, Park P M, Consterdine I E. 1993. Marine aerosol concentrations and estimated fluxes over the sea. Quarterly Journal of the Royal Meteorological Society, 119(512): 809–824. doi: 10.1002/qj.49711951211
    [31]
    Toba Y, Iida N, Kawamura H, et al. 1990. Wave dependence of sea-surface wind stress. Journal of Physical Oceanography, 20(5): 705–721. doi: 10.1175/1520-0485(1990)020<0705:WDOSSW>2.0.CO;2
    [32]
    Toba Y, Koga M. 1986. A parameter describing overall conditions of wave breaking, whitecapping, sea-spray production and wind stress. In: Monahan E C, Niocaill G M, eds. Oceanic Whitecaps. Dordrecht: Springer, 37–47
    [33]
    Troitskaya Y, Kandaurov A, Ermakova O, et al. 2018. The “bag breakup” spume droplet generation mechanism at high winds. Part I: Spray generation function. Journal of Physical Oceanography, 48(9): 2167–2188. doi: 10.1175/JPO-D-17-0104.1
    [34]
    Veron F. 2015. Ocean spray. Annual Review of Fluid Mechanics, 47: 507–538. doi: 10.1146/annurev-fluid-010814-014651
    [35]
    Veron F, Hopkins C, Harrison E L, et al. 2012. Sea spray spume droplet production in high wind speeds. Geophysical Research Letters, 39(16): L16602
    [36]
    Wan Zhanhong, Zhu Jianbin, Sun Ke, et al. 2017. An integrated turbulent simulation and parameter modeling study on sea-spray dynamics and fluxes. Ocean Engineering, 130: 64–71. doi: 10.1016/j.oceaneng.2016.11.041
    [37]
    Woolf D K, Monahan E C, Spiel D E. 1988. Quantification of the marine aerosol produced by whitecaps. In: Proceedings of the Seventh Conference on Ocean-Atmosphere Interaction. Anaheim: American Meteorological Society, 182–185
    [38]
    Wu Jin. 1982. Wind-stress coefficients over sea surface from breeze to hurricane. Journal of Geophysical Research: Oceans, 87(C12): 9704–9706. doi: 10.1029/JC087iC12p09704
    [39]
    Wu Jin. 1993. Production of spume drops by the wind tearing of wave crests: the search for quantification. Journal of Geophysical Research: Oceans, 98(C10): 18221–18227. doi: 10.1029/93JC01834
    [40]
    Wu Jin, Murray J J, Lai R J. 1984. Production and distributions of sea spray. Journal of Geophysical Research: Oceans, 89(C5): 8163–8169. doi: 10.1029/JC089iC05p08163
    [41]
    Wu Lichuan, Rutgersson A, Sahlée E, et al. 2015. The impact of waves and sea spray on modelling storm track and development. Tellus A, 67(1): 27967. doi: 10.3402/tellusa.v67.27967
    [42]
    Zhao Dongliang, Toba Y. 2001. Dependence of whitecap coverage on wind and wind-wave properties. Journal of Oceanography, 57(5): 603–616. doi: 10.1023/A:1021215904955
    [43]
    Zhao Dongliang, Toba Y, Sugioka K I, et al. 2006. New sea spray generation function for spume droplets. Journal of Geophysical Research: Oceans, 111(C2): C02007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (412) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return