Citation: | Jie Li, Jihao Zhu, Fengyou Chu, Xiaohu Li, Zhimin Zhu, Hao Wang. Chemical composition and petrogenesis of plagioclases in plagioclase-phyric basalts from the Southwest Indian Ridge (51°E)[J]. Acta Oceanologica Sinica, 2020, 39(7): 42-49. doi: 10.1007/s13131-020-1613-1 |
[1] |
Bennett E N, Lissenberg C J, Cashman K V. 2019. The significance of plagioclase textures in mid-ocean ridge basalt (Gakkel Ridge, Arctic Ocean). Contributions to Mineralogy and Petrology, 174(6): 49. doi: 10.1007/s00410-019-1587-1
|
[2] |
Bézos A, Humler E. 2005. The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochimica et Cosmochimica Acta, 69(3): 711–725. doi: 10.1016/j.gca.2004.07.026
|
[3] |
Bindeman I N, Davis A M, Drake M J. 1998. Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochimica et Cosmochimica Acta, 62(7): 1175–1193. doi: 10.1016/S0016-7037(98)00047-7
|
[4] |
Cannat M, Sauter D, Bezos A, et al. 2008. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 9(4): Q04002. doi: 10.1029/2007GC001676
|
[5] |
Chen Xiaoming, Tan Qingquan, Zhao Guangtao. 2002. Plagioclases from the basalt of Okinawa Trough and its petrogenesis significance. Acta Petrologica Sinica (in Chinese), 18(4): 482–488
|
[6] |
Coogan L A, MacLeod C J, Dick H J B, et al. 2001. Whole-rock geochemistry of gabbros from the Southwest Indian Ridge: constraints on geochemical fractionations between the upper and lower oceanic crust and magma chamber processes at (very) slow-spreading ridges. Chemical Geology, 178(1−4): 1–22. doi: 10.1016/S0009-2541(00)00424-1
|
[7] |
Coote A C, Shane P. 2016. Crystal origins and magmatic system beneath Ngauruhoe volcano (New Zealand) revealed by plagioclase textures and compositions. Lithos, 260: 107–119. doi: 10.1016/j.lithos.2016.05.017
|
[8] |
Coote A, Shane P, Stirling C, et al. 2018. The origin of plagioclase phenocrysts in basalts from continental monogenetic volcanoes of the Kaikohe-Bay of Islands field, New Zealand: implications for magmatic assembly and ascent. Contributions to Mineralogy and Petrology, 173(2): 14. doi: 10.1007/s00410-018-1440-y
|
[9] |
Costa F, Chakraborty S, Dohmen R. 2003. Diffusion coupling between trace and major elements and a model for calculation of magma residence times using plagioclase. Geochimica et Cosmochimica Acta, 67(12): 2189–2200. doi: 10.1016/S0016-7037(02)01345-5
|
[10] |
Costa F, Coogan L A, Chakraborty S. 2010. The time scales of magma mixing and mingling involving primitive melts and melt-mush interaction at mid-ocean ridges. Contributions to Mineralogy and Petrology, 159(3): 371–387. doi: 10.1007/s00410-009-0432-3
|
[11] |
Cullen A, Vicenzi E, McBirney A R. 1989. Plagioclase-ultraphyric basalts of the Galapagos Archipelago. Journal of Volcanology and Geothermal Research, 37(3−4): 325–337. doi: 10.1016/0377-0273(89)90087-5
|
[12] |
Dick H J B. 1989. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 71–105. doi: 10.1144/GSL.SP.1989.042.01.06
|
[13] |
Dick H J B, Lin Jian, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405–412. doi: 10.1038/nature02128
|
[14] |
Drignon M J, Nielsen R L, Tepley III F J, et al. 2019. Upper mantle origin of plagioclase megacrysts from plagioclase-ultraphyric mid-oceanic ridge basalt. Geology, 47(1): 43–46. doi: 10.1130/G45542.1
|
[15] |
Georgen J E, Lin Jian, Dick H J B. 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets. Earth and Planetary Science Letters, 187(3−4): 283–300. doi: 10.1016/S0012-821X(01)00293-X
|
[16] |
Ginibre C, Wörner G, Kronz A. 2002. Minor-and trace-element zoning in plagioclase: implications for magma chamber processes at Parinacota volcano, northern Chile. Contributions to Mineralogy and Petrology, 143(3): 300–315. doi: 10.1007/s00410-002-0351-z
|
[17] |
Ginibre C, Wörner G, Kronz A. 2004. Structure and dynamics of the laacher see magma chamber (Eifel, Germany) from major and trace element zoning in sanidine: a cathodoluminescence and electron microprobe study. Journal of Petrology, 45(11): 2197–2223. doi: 10.1093/petrology/egh053
|
[18] |
Grove T L, Baker M B, Kinzler R J. 1984. Coupled CaAl-NaSi diffusion in plagioclase feldspar: experiments and applications to cooling rate speedometry. Geochimica et Cosmochimica Acta, 48(10): 2113–2121. doi: 10.1016/0016-7037(84)90391-0
|
[19] |
Hellevang B, Pedersen R B. 2008. Magma ascent and crustal accretion at ultraslow-spreading ridges: constraints from plagioclase ultraphyric basalts from the arctic mid-ocean ridge. Journal of Petrology, 49(2): 267–294
|
[20] |
Jian Hanchao, Singh S C, Chen Y J, et al. 2017. Evidence of an axial magma chamber beneath the ultraslow-spreading Southwest Indian Ridge. Geology, 45(2): 143–146. doi: 10.1130/G38356.1
|
[21] |
Kamenetsky V S, Everard J L, Crawford A J, et al. 2000. Enriched end-member of primitive MORB melts: petrology and geochemistry of glasses from Macquarie Island (SW Pacific). Journal of Petrology, 41(3): 411–430. doi: 10.1093/petrology/41.3.411
|
[22] |
Kudo A M, Weill D F. 1970. An igneous plagioclase thermometer. Contributions to Mineralogy and Petrology, 25(1): 52–65. doi: 10.1007/BF00383062
|
[23] |
Landi P, Métrich N, Bertagnini A, et al. 2004. Dynamics of magma mixing and degassing recorded in plagioclase at Stromboli (Aeolian Archipelago, Italy). Contributions to Mineralogy and Petrology, 147(2): 213–227. doi: 10.1007/s00410-004-0555-5
|
[24] |
Lange A E, Nielsen R L, Tepley III F J, et al. 2013. The petrogenesis of plagioclase-phyric basalts at mid-ocean ridges. Geochemistry, Geophysics, Geosystems, 14(8): 3282–3296. doi: 10.1002/ggge.20207
|
[25] |
Martel C, Radadi Ali A, Poussineau S, et al. 2006. Basalt-inherited microlites in silicic magmas: evidence from Mount Pelée (Martinique, French West Indies). Geology, 34(11): 905–908. doi: 10.1130/G22672A.1
|
[26] |
Martel C, Schmidt B C. 2003. Decompression experiments as an insight into ascent rates of silicic magmas. Contributions to Mineralogy and Petrology, 144(4): 397–415. doi: 10.1007/s00410-002-0404-3
|
[27] |
Mollo S, Putirka K, Iezzi G, et al. 2011. Plagioclase-melt (dis)equilibrium due to cooling dynamics: implications for thermometry, barometry and hygrometry. Lithos, 125(1−2): 221–235. doi: 10.1016/j.lithos.2011.02.008
|
[28] |
Moore A, Coogan L A, Costa F, et al. 2014. Primitive melt replenishment and crystal-mush disaggregation in the weeks preceding the 2005−2006 eruption 9°50′N, EPR. Earth and Planetary Science Letters, 403: 15–26. doi: 10.1016/j.jpgl.2014.06.015
|
[29] |
Mutch E J F, Maclennan J, Holland T J B, et al. 2019. Millennial storage of near--Moho magma. Science, 365(6450): 260–264. doi: 10.1126/science.aax4092
|
[30] |
Nielsen R L, Crum J, Bourgeois R, et al. 1995. Melt inclusions in high-An plagioclase from the Gorda Ridge: an example of the local diversity of MORB parent magmas. Contributions to Mineralogy and Petrology, 122(1−2): 34–50. doi: 10.1007/s004100050111
|
[31] |
Niu Xiongwei, Ruan Aiguo, Li Jiabiao, et al. 2015. Along-axis variation in crustal thickness at the ultraslow spreading Southwest Indian Ridge (50°E) from a wide-angle seismic experiment. Geochemistry, Geophysics, Geosystems, 16(2): 468–485. doi: 10.1002/2014GC005645
|
[32] |
Robinson C J, Bickle M J, Minshull T A, et al. 2001. Low degree melting under the Southwest Indian Ridge: the roles of mantle temperature, conductive cooling and wet melting. Earth and Planetary Science Letters, 188(3−4): 383–398. doi: 10.1016/S0012-821X(01)00329-6
|
[33] |
Sauter D, Cannat M, Meyzen C, et al. 2009. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20′E: interaction with the Crozet hotspot?. Geophysical Journal International, 179(2): 687–699. doi: 10.1111/j.1365-246X.2009.04308.x
|
[34] |
Shcherbakov V D, Plechov P Y, Izbekov P E, Shipman J S. 2011. Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka. Contributions to Mineralogy and Petrology, 162(1): 83–99. doi: 10.1007/s00410-010-0584-1
|
[35] |
Sisson T W, Grove T L. 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113(2): 143–166. doi: 10.1007/BF00283225
|
[36] |
Stolper E. 1980. A phase diagram for mid-ocean ridge basalts: preliminary results and implications for petrogenesis. Contributions to Mineralogy and Petrology, 74(1): 13–27. doi: 10.1007/BF00375485
|
[37] |
Tao Chunhui, Lin Jian, Guo Shiqin, et al. 2012. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology, 40(1): 47–50. doi: 10.1130/G32389.1
|
[38] |
Yang Fan, Huang Xiaolong, Xu Yigang, et al. 2019. Plume-ridge interaction in the South China Sea: thermometric evidence from Hole U1431E of IODP Expedition 349. Lithos, 324−325: 466–478. doi: 10.1016/j.lithos.2018.11.031
|
[39] |
Yang A Y, Zhao Taiping, Zhou Meifu, et al. 2013. Os isotopic compositions of MORBs from the ultra-slow spreading Southwest Indian Ridge: Constraints on the assimilation and fractional crystallization (AFC) processes. Lithos, 179: 28–35. doi: 10.1016/j.lithos.2013.07.020
|
[40] |
Yang A Y, Zhou Meifu, Zhao Taiping, et al. 2014. Chalcophile elemental compositions of morbs from the ultraslow-spreading southwest Indian ridge and controls of lithospheric structure on S-saturated differentiation. Chemical Geology, 382: 1–13. doi: 10.1016/j.chemgeo.2014.05.019
|
[41] |
Yang A Y, Zhao T P, Zhou M F, et al. 2017. Isotopically enriched N-MORB: a new geochemical signature of off-axis plume-ridge interaction-a case study at 50°28′E, Southwest Indian Ridge. Journal of Geophysical Research: Solid Earth, 122(1): 191–213. doi: 10.1002/2016JB013284
|
[42] |
Zhang Tao, Lin Jian, Gao Jinyao. 2013. Magmatism and tectonic processes in Area A hydrothermal vent on the Southwest Indian Ridge. Science China Earth Sciences, 56(12): 2186–2197. doi: 10.1007/s11430-013-4630-5
|