Citation: | Xindong Pan, Zhenjiang Ye, Binduo Xu, Tao Jiang, Jian Yang, Jiahua Cheng, Yongjun Tian. Combining otolith elemental signatures with multivariate analytical models to verify the migratory pattern of Japanese Spanish mackerel (Scomberomorus niphonius) in the southern Yellow Sea[J]. Acta Oceanologica Sinica, 2020, 39(12): 54-64. doi: 10.1007/s13131-020-1606-0 |
[1] |
Amano Y, Kuwahara M, Takahashi T, et al. 2013. Otolith elemental and Sr isotopic composition as a natal tag for Biwa salmon Oncorhynchus masou subsp. in Lake Biwa, Japan. Aquatic Biology, 19(1): 85–95. doi: 10.3354/ab00520
|
[2] |
Bath G E, Thorrold S R, Jones C M, et al. 2000. Strontium and barium uptake in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta, 64(10): 1705–1714. doi: 10.1016/S0016-7037(99)00419-6
|
[3] |
Borcard D, Gillet F, Legendre P. 2011. Spatial analysis of ecological data. In: Borcard D, Gillet F, Legendre P, eds. Numerical Ecology with R. New York: Springer, 227–292
|
[4] |
Breiman L, Friedman J H, Olshen R A, et al. 1984. Classification and regression trees. Biometrics, 40(3): 874
|
[5] |
Brown R J, Severin K P. 2009. Otolith chemistry analyses indicate that water Sr:Ca is the primary factor influencing otolith Sr:Ca for freshwater and diadromous fish but not for marine fish. Canadian Journal of Fisheries and Aquatic Sciences, 66(10): 1790–1808. doi: 10.1139/F09-112
|
[6] |
Campana S E. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series, 188: 263–297. doi: 10.3354/meps188263
|
[7] |
Campana S E, Thorrold S R. 2001. Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations?. Canadian Journal of Fisheries Aquatic Science, 58(1): 30–38. doi: 10.1139/f00-177
|
[8] |
Chan P, Halfar J, Williams B, et al. 2011. Freshening of the Alaska Coastal Current recorded by coralline algal Ba/Ca ratios. Journal Geophysical Research: Biogeosciences, 116(G1): 1387–1387
|
[9] |
Cheung W W, Watson R, Pauly D. 2013. Signature of ocean warming in global fisheries catch. Nature, 497(7449): 365–368. doi: 10.1038/nature12156
|
[10] |
Chittaro P M, Usseglio P, Fryer B J, et al. 2006. Spatial variation in otolith chemistry of Lutjanus apodus at Turneffe Atoll, Belize. Estuarine, Coastal and Shelf Science, 67(4): 673–680. doi: 10.1016/j.ecss.2005.12.014
|
[11] |
De’ath G. 2002. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology, 83(4): 1105–1117
|
[12] |
Edmonds J S, Caputi N, Morita M. 1991. Stock discrimination by trace-element analysis of otoliths of Orange Roughy (Hoplostethus atlanticus), a deep-water marine teleost. Australian Journal of Marine and Freshwater Research, 42(4): 383–389. doi: 10.1071/MF9910383
|
[13] |
Elsdon T S, Gillanders B M. 2003. Reconstructing migratory patterns of fish based on environmental influences on otolith chemistry. Reviews in Fish Biology and Fisheries, 13(3): 217–235. doi: 10.1023/B:RFBF.0000033071.73952.40
|
[14] |
Elsdon T S, Gillanders B M. 2004. Fish otolith chemistry influenced by exposure to multiple environmental variables. Journal of Experimental Marine Biology and Ecology, 313(2): 269–284. doi: 10.1016/j.jembe.2004.08.010
|
[15] |
Elsdon T S, Wells B K, Campana S E, et al. 2008. Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanography and Marine Biology: An Annual Review, 46(1): 297–330
|
[16] |
Fablet R, Daverat F, De Pontual H. 2007. Unsupervised Bayesian reconstruction of individual life histories from otolith signatures: case study of Sr:Ca transects of European eel (Anguilla anguilla) otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 64(1): 152–165. doi: 10.1139/f06-173
|
[17] |
Fujiwara K, Satou S, Tojima T, et al. 2013. Maturity and spawning of female Spanish mackerel Scomberomorus niphonius in the Sea of Japan. Bulletin of Kyoto Prefectural Agriculture (in Japanese), 25: 13–18
|
[18] |
Gemperline P J, Rulifson R A, Paramore L. 2002. Multi-way analysis of trace elements in fish otoliths to track migratory patterns. Chemometrics and Intelligent Laboratory Systems, 58(1–2): 135–146
|
[19] |
Gillanders B M. 2005. Otolith chemistry to determine movements of diadromous and freshwater fish. Aquatic Living Resources, 18(3): 291–300. doi: 10.1051/alr:2005033
|
[20] |
Gillanders B M, Kingsford M J. 2003. Spatial variation in elemental composition of otoliths of three species of fish (family Sparidae). Estuarine, Coastal and Shelf Science, 57(5–6): 1049–1064
|
[21] |
Gower J C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53(3–4): 325–338
|
[22] |
Grammer G L, Morrongiello J R, Izzo C, et al. 2017. Coupling biogeochemical tracers with fish growth reveals physiological and environmental controls on otolith chemistry. Ecological Monographs, 87(3): 487–507. doi: 10.1002/ecm.1264
|
[23] |
Hedger R D, Atkinson P M, Thibault I, et al. 2008. A quantitative approach for classifying fish otolith strontium: calcium sequences into environmental histories. Ecological Informatics, 3(3): 207–217. doi: 10.1016/j.ecoinf.2008.04.001
|
[24] |
Hicks A S, Closs G P, Swearer S E. 2010. Otolith microchemistry of two amphidromous galaxiids across an experimental salinity gradient: a multi-element approach for tracking diadromous migrations. Journal of Experimental Marine Biology and Ecology, 394(1–2): 86–97
|
[25] |
Horikawa H, Zheng Y, Meng T. 2001. Biological and Ecological Characteristics of Valuable Fisheries Resources from the East China Sea and the Yellow Sea—Comparison between the Chinese and Japanese Knowledge. Nagasaki, Japan: Seikai National Fisheries Research Institute
|
[26] |
Huh S H, Park J M, Baeck G W. 2006. Feeding habits of spanish mackerel (Scomberomorus niphonius) in the southern sea of Korea. Korean Journal of Fisheries and Aquatic Sciences, 39(1): 35–41. doi: 10.5657/kfas.2006.39.1.035
|
[27] |
Inoue T, Wada Y, Tojima T, et al. 2007. Age and migration of the Japanese Spanish Mackerel (Scomberomorus niphonius) in the coastal waters of Kyoto Prefecture. Bulletin of the Kyoto Institute of Oceanic & Fishery Science, 29: 1–6
|
[28] |
Izzo C, Reis-Santos P, Gillanders B M. 2018. Otolith chemistry does not just reflect environmental conditions: A meta-analytic evaluation. Fish and Fisheries, 19(3): 441–454. doi: 10.1111/faf.12264
|
[29] |
Jiang Tao, Liu Hongbo, Lu Mingjie, et al. 2016. A Possible connectivity among estuarine tapertail anchovy (Coilia nasus) populations in the Yangtze River, Yellow Sea, and Poyang Lake. Estuaries and Coasts, 39(6): 1762–1768. doi: 10.1007/s12237-016-0107-z
|
[30] |
Kalish J M. 1991. Oxygen and carbon stable isotopes in the otoliths of wild and laboratory-reared Australian salmon (Arripis trutta). Marine Biology, 110(1): 37–47. doi: 10.1007/BF01313090
|
[31] |
Kim H, Lim Y N, Song S H, et al. 2016. Understanding the migration path of Spanish mackerel Scomberomorus niphonius using catch distributions. Korean Journal of Fisheries and Aquatic Sciences, 49(3): 376–384. doi: 10.5657/KFAS.2016.0376
|
[32] |
Lea D W, Boyle E A. 1991. Barium in planktonic foraminifera. Geochimica et Cosmochimica Acta, 55(11): 3321–3331. doi: 10.1016/0016-7037(91)90491-M
|
[33] |
Liang Cui, Pauly D. 2017. Fisheries impacts on China’s coastal ecosystems: Unmasking a pervasive ‘fishing down’ effect. PLoS One, 12(3): e0173296. doi: 10.1371/journal.pone.0173296
|
[34] |
Liu Chanxin, Yang Kaiwen. 1982. Studies on the growth of Spanish mackerel, Scomberomorus niphonius in the Huanghai Sea and Bohai Sea. Oceanologia et Limnologia Sinica (in Chinese), 13(2): 170–178
|
[35] |
Lü Xinguang, Qiao Fangli, Xia Changshui, et al. 2006. Upwelling off Yangtze River estuary in summer. Journal of Geophysical Research: Oceans, 111(C11): C11S08
|
[36] |
Ma Shuyang, Cheng Jiahua, Li Jianchao, et al. 2019. Interannual to decadal variability in the catches of small pelagic fishes from China Seas and its responses to climatic regime shifts. Deep Sea Research Part II: Topical Studies in Oceanography, 159: 112–129. doi: 10.1016/j.dsr2.2018.10.005
|
[37] |
Masuda R, Shoji J, Nakayama S, et al. 2003. Development of schooling behavior in Spanish mackerel Scomberomorus niphonius during early ontogeny. Fisheries Science, 69(4): 772–776. doi: 10.1046/j.1444-2906.2003.00685.x
|
[38] |
Mercier L, Darnaude A M, Bruguier O, et al. 2011. Selecting statistical models and variable combinations for optimal classification using otolith microchemistry. Ecological Applications, 21(4): 1352–1364. doi: 10.1890/09-1887.1
|
[39] |
Pang Yumeng, Tian Yongjun, Fu Caihong, et al. 2018. Variability of coastal cephalopods in overexploited China Seas under climate change with implications on fisheries management. Fisheries Research, 208: 22–33. doi: 10.1016/j.fishres.2018.07.004
|
[40] |
Qiu Shengyao, Ye Maozhong. 1996. Studies on the reproductive biology of Scomberomorus niphonius in the Yellow Sea and Bohai Sea. Oceanologia et Limnologia Sinica (in Chinese), 27(5): 463–470
|
[41] |
R Development Core Team. 2013. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing
|
[42] |
Secor D H, Dean J M, Campana S E. 1995a. Recent Developments in Fish Otolith Research. Columbia, SC: University of South Carolina Press
|
[43] |
Secor D H, Henderson-Arzapalo A, Piccoli P M. 1995b. Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes?. Journal of Experimental Marine Biology and Ecology, 192(1): 15–33. doi: 10.1016/0022-0981(95)00054-U
|
[44] |
Shoji J, Maehara T, Tanaka M. 1999. Short-term occurrence and rapid growth of Spanish mackerel larvae in the central waters of the Seto Inland Sea, Japan. Fishery Science, 65(1): 68–72. doi: 10.2331/fishsci.65.68
|
[45] |
Shoji J, Tanaka M. 2005. Distribution, feeding condition, and growth of Japanese Spanish mackerel (Scomberomorus niphonius) larvae in the Seto Inland Sea. Fishery Bulletin, 103(2): 371–379
|
[46] |
Shui Bonian, Han Zhiqiang, Gao Tianxiang, et al. 2009. Mitochondrial DNA variation in the East China Sea and Yellow Sea populations of Japanese Spanish mackerel Scomberomorus niphonius. Fisheries Science, 75(3): 593–600. doi: 10.1007/s12562-009-0083-3
|
[47] |
Sturrock A M, Hunter E, Milton J A, et al. 2015. Quantifying physiological influences on otolith microchemistry. Methods in Ecology and Evolution, 6(7): 806–816. doi: 10.1111/2041-210X.12381
|
[48] |
Sturrock A M, Trueman C N, Darnaude A M, et al. 2012. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes?. Journal of Fish Biology, 81(2): 766–795. doi: 10.1111/j.1095-8649.2012.03372.x
|
[49] |
Thibault I, Hedger R D, Dodson J J, et al. 2010. Anadromy and the dispersal of an invasive fish species (Oncorhynchus mykiss) in eastern Quebec, as revealed by otolith microchemistry. Ecology of Freshwater Fish, 19(3): 348–360. doi: 10.1111/j.1600-0633.2010.00417.x
|
[50] |
Thresher R E. 1999. Elemental composition of otoliths as a stock delineator in fishes. Fisheries Research, 43(1–3): 165–204
|
[51] |
Thresher R E, Proctor C, Gunn J S, et al. 1994. An evaluation of electron-probe microanalysis of otoliths for stock delineation and identification of nursery areas in a southern temperate groundfish, Nemadactylus macropterus (Cheilodactylidae). Fishery Bulletin, 92(4): 817–840
|
[52] |
Tian Yongjun, Kidokoro H, Watanabe T. 2006. Long-term changes in the fish community structure from the Tsushima warm current region of the Japan/East Sea with an emphasis on the impacts of fishing and climate regime shift over the last four decades. Progress in Oceanography, 68(2–4): 217–237
|
[53] |
Uehara K, Saito Y. 2003. Late Quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology. Sedimentary Geology, 162(1–2): 25–38
|
[54] |
Vignon M. 2015. Extracting environmental histories from sclerochronological structures—Recursive partitioning as a mean to explore multi-elemental composition of fish otolith. Ecological Informatics, 30: 159–169. doi: 10.1016/j.ecoinf.2015.10.002
|
[55] |
Walther B D, Limburg K E. 2012. The use of otolith chemistry to characterize diadromous migrations. Journal of Fish Biology, 81(2): 796–825. doi: 10.1111/j.1095-8649.2012.03371.x
|
[56] |
Walther B D, Thorrold S R. 2006. Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Marine Ecology Progress Series, 311: 125–130. doi: 10.3354/meps311125
|
[57] |
Wei Sheng. 1980. The fishing seasons and grounds of the blue spotted mackerel, Scomberomorus niphonius in the Yellow Sea and Bohai in relation to environmental factors. Transaction of Oceanology and Limnology (in Chinese), (2): 34–40
|
[58] |
Wei Qinsheng, Yu Zhigang, Ran Xiangbin, et al. 2011. Characteristics of the western coastal current of the Yellow Sea and its impacts on material transportation. Advances in Earth Science (in Chinese), 26(2): 145–156
|
[59] |
Yang Jian, Arai T, Liu Hongbo, et al. 2006. Reconstructing habitat use of Coilia mystus and Coilia ectenes of the Yangtze River estuary, and of Coilia ectenes of Taihu Lake, based on otolith strontium and calcium. Journal of Fish Biology, 69(4): 1120–1135. doi: 10.1111/j.1095-8649.2006.01186.x
|
[60] |
Yin Yong, Zou Xinqin, Zhu Dakui, et al. 2008. Sedimentary facies of the central part of radial tidal sand ridge system of the eastern China coast. Frontiers of Earth Science in China, 2(4): 408–417. doi: 10.1007/s11707-008-0053-6
|
[61] |
Yuan Yangyang, Ye Zhenjiang, Liu Qun, et al. 2009. Fishery oceanography and spatial-temporal distribution of Scomberomorus niphonius in spring in southern Yellow Sea. Oceanologia et Limnologia Sinica (in Chinese), 40(4): 506–510
|
[62] |
Zhang Chi, Ye Zhenjiang, Li Zengguang, et al. 2016. Population structure of Japanese Spanish mackerel Scomberomorus niphonius in the Bohai Sea, the Yellow Sea and the East China Sea: evidence from random forests based on otolith features. Fisheries Science, 82(2): 251–256. doi: 10.1007/s12562-016-0968-x
|
[63] |
Zhang Chi, Ye Zhenjiang, Panhwar S K, et al. 2013. Stock discrimination of the Japanese Spanish mackerel (Scomberomorus niphonius) based on the otolith shape analysis in the Yellow Sea and Bohai Sea. Journal of Applied Ichthyology, 29(2): 368–373. doi: 10.1111/jai.12084
|
[64] |
Zhu Jianrong, Qi Dingman, Wu Hui. 2004. Observation and modeling analysis of dynamic mechanism of the upwelling at Lusi. Journal of East China Normal University (Natural Science) (in Chinese), (2): 87–91, 103
|