Volume 39 Issue 5
May  2020
Turn off MathJax
Article Contents
Daohuan Xu, Ling Du, Jingkai Ma, Huangyuan Shi. Pathways of meridional atmospheric moisture transport in the central Arctic[J]. Acta Oceanologica Sinica, 2020, 39(5): 55-64. doi: 10.1007/s13131-020-1598-9
Citation: Daohuan Xu, Ling Du, Jingkai Ma, Huangyuan Shi. Pathways of meridional atmospheric moisture transport in the central Arctic[J]. Acta Oceanologica Sinica, 2020, 39(5): 55-64. doi: 10.1007/s13131-020-1598-9

Pathways of meridional atmospheric moisture transport in the central Arctic

doi: 10.1007/s13131-020-1598-9
Funds:  The Global Change Research Program of China under contract No. 2015CB953902; the National Natural Science Foundation of China under contract Nos 41376008, 41330960 and 41576020.
More Information
  • Corresponding author: E-mail: duling@ouc.edu.cn
  • Received Date: 2019-07-22
  • Accepted Date: 2019-08-16
  • Available Online: 2020-12-28
  • Publish Date: 2020-05-25
  • Atmospheric moisture transport plays an important role in latent heat release and hydrologic interactions in the Arctic. In recent years, with the rapid decline in sea ice, this transport has changed. Here, we calculated the vertically integrated atmospheric moisture meridional transport (AMTv) from two global reanalysis datasets, from 1979–2015, and found moisture pathways into the central Arctic. Four stable pathways showed an occurrence frequency greater than 70%, and these pathways exhibited a perennial seasonal pattern in the atmosphere above the Laptev Sea Pathway (LSP), Canadian Arctic Archipelago Pathway (CAAP), both sides of the Greenland plateau. Another seasonal pathway appeared above the east of the Chukchi Sea (CSP) during the melting/freezing months (March to September). Through these pathways, AMTv contributed a total moisture exchange of 60%–80%—averaged over a 75°N circle—and focused on the low troposphere. Transports across the LSP, CSP and CAAP pathways likely create an enclosed moisture route. Meridional moisture fluxes are intensified in the Pacific sector of Arctic (PSA), especially during melting/freezing months. AMTv interannual variabilities are illustrated mainly in the Laptev Sea and the east Greenland pathway. Results indicate that accompanying a tendency for a stronger Beaufort Sea High in this sea level pressure field, AMTv through PSA pathways, switched from output to input, and approximately 960 km3 of equivalent liquid water was transferred into the central Arctic during each decade. The detrended AMTv increment is highly correlated with the rapid decline of old ice areas (correlation coefficient is –0.78) for their synchronous fluctuations in the 1980s and the last decade.
  • loading
  • [1]
    Bintanja R, Selten F M. 2014. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature, 509(7501): 479–482. doi: 10.1038/nature13259
    [2]
    Comiso J C. 2012. Large decadal decline of the Arctic multiyear ice cover. Journal of Climate, 25(4): 1176–1193. doi: 10.1175/JCLI-D-11-00113.1
    [3]
    Crawford A D, Horvath S, Stroeve J, et al. 2018. Modulation of sea ice melt onset and retreat in the Laptev Sea by the timing of snow retreat in the West Siberian Plain. Journal of Geophysical Research: Atmospheres, 123(16): 8691–8707. doi: 10.1029/2018JD028697
    [4]
    Cui Hongyan, Qiao Fangli, Shu Qi, et al. 2015. Causes for different spatial distributions of minimum Arctic sea-ice extent in 2007 and 2012. Acta Oceanologica Sinica, 34(9): 94–101. doi: 10.1007/s13131-015-0676-x
    [5]
    Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA‐interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656): 553–597. doi: 10.1002/qj.828
    [6]
    Dufour A, Zolina O, Gulev S K. 2016. Atmospheric moisture transport to the Arctic: assessment of reanalyses and analysis of transport components. Journal of Climate, 29(14): 5061–5081. doi: 10.1175/JCLI-D-15-0559.1
    [7]
    Epstein E S. 1969. Stochastic dynamic prediction. Tellus, 21(6): 739–759. doi: 10.3402/tellusa.v21i6.10143
    [8]
    Forsberg R, Sørensen L, Simonsen S. 2017. Greenland and Antarctica ice sheet mass changes and effects on global sea level. Surveys in Geophysics, 38: 89–104. doi: 10.1007/s10712-016-9398-7
    [9]
    Francis J A, Vavrus S J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters, 39(6): L06801
    [10]
    Gimeno L, Vázquez M, Nieto R, et al. 2015. Atmospheric moisture transport: the bridge between ocean evaporation and Arctic ice melting. Earth System Dynamics, 6(2): 583–589. doi: 10.5194/esd-6-583-2015
    [11]
    Gimeno-Sotelo L, Nieto R, Vázquez M, et al. 2018. A new pattern of the moisture transport for precipitation related to the drastic decline in Arctic sea ice extent. Earth System Dynamics, 9(2): 611–625. doi: 10.5194/esd-9-611-2018
    [12]
    Hartmann D L, Tank A M G K, Rusticucci M, et al. 2013. Observations: atmosphere and surface. In: Stocker T F, Qin D, Plattner G K, et al., eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 159–254
    [13]
    Higgins M E, Cassano J J. 2009. Impacts of reduced sea ice on winter Arctic atmospheric circulation, precipitation, and temperature. Journal of Geophysical Research: Atmospheres, 114(D16): D16107. doi: 10.1029/2009JD011884
    [14]
    Kapsch M L, Graversen R G, Tjernström M. 2013. Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nature Climate Change, 3(8): 744–748. doi: 10.1038/nclimate1884
    [15]
    Kopec B G, Feng Xiahong, Michel F A, et al. 2016. Influence of sea ice on Arctic precipitation. Proceedings of the National Academy of Sciences of the United States of America, 113(1): 46–51. doi: 10.1073/pnas.1504633113
    [16]
    Lee S, Feldstein S, Pollard D, et al. 2011. Do planetary wave dynamics contribute to equable climates?. Journal of Climate, 24(9): 2391–2404. doi: 10.1175/2011JCLI3825.1
    [17]
    Lee H J, Kwon M O, Yeh S W, et al. 2017. Impact of poleward moisture transport from the north pacific on the acceleration of sea ice loss in the Arctic since 2002. Journal of Climate, 30(17): 6757–6769. doi: 10.1175/JCLI-D-16-0461.1
    [18]
    Liu Jiping, Curry J A, Wang Huijun, et al. 2012. Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109(11): 4074–4079. doi: 10.1073/pnas.1114910109
    [19]
    Maslanik J A, Fowler C, Stroeve J, et al. 2007. A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophysical Research Letters, 34(24): L24501. doi: 10.1029/2007GL032043
    [20]
    Matsumura S, Zhang Xiangdong, Yamazaki K. 2014. Summer Arctic atmospheric circulation response to spring Eurasian snow cover and its possible linkage to accelerated Sea Ice decrease. Journal of Climate, 27(17): 6551–6558. doi: 10.1175/JCLI-D-13-00549.1
    [21]
    Mioduszewski J R, Rennermalm A K, Hammann A, et al. 2016. Atmospheric drivers of Greenland surface melt revealed by self-organizing maps. Journal of Geophysical Research: Atmospheres, 121(10): 5095–5114. doi: 10.1002/2015JD024550
    [22]
    Moore G W K. 2012. Decadal variability and a recent amplification of the summer Beaufort Sea High. Geophysical Research Letters, 39(10): L10807
    [23]
    Mortin J, Svensson G, Graversen R G, et al. 2016. Melt onset over Arctic sea ice controlled by atmospheric moisture transport. Geophysical Research Letters, 43(12): 6636–6642. doi: 10.1002/2016GL069330
    [24]
    Overland J E, Francis J A, Hanna E, et al. 2012. The recent shift in early summer Arctic atmospheric circulation. Geophysical Research Letters, 39(19): L19804
    [25]
    Park D S R, Lee S, Feldstein S B. 2015. Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. Journal of Climate, 28(10): 4027–4033. doi: 10.1175/JCLI-D-15-0042.1
    [26]
    Peterson B J, Holmes R M, McClelland J W, et al. 2002. Increasing river discharge to the Arctic ocean. Science, 298(5601): 2171–2173. doi: 10.1126/science.1077445
    [27]
    Polyakov I V, Alekseev G V, Bekryaev R V, et al. 2002. Observationally based assessment of polar amplification of global warming. Geophysical Research Letters, 29(18): 25–1
    [28]
    Rinke A, Melsheimer C, Dethloff K, et al. 2009. Arctic total water vapor: comparison of regional climate simulations with observations, and simulated decadal trends. Journal of Hydrometeorology, 10(1): 113–129. doi: 10.1175/2008JHM970.1
    [29]
    Rosen R D, Salstein D A, Peixoto J P. 1979. Variability in the annual fields of large-scale atmospheric water vapor transport. Monthly Weather Review, 107(1): 26–37. doi: 10.1175/1520-0493(1979)107<0026:VITAFO>2.0.CO;2
    [30]
    Serreze M C, Barrett A P, Stroeve J C, et al. 2009. The emergence of surface-based Arctic amplification. The Cryosphere, 3(1): 11–19. doi: 10.5194/tc-3-11-2009
    [31]
    Serreze M C, Barry R G, Walsh J E. 1995. Atmospheric water vapor characteristics at 70°N. Journal of Climate, 8(4): 719–731. doi: 10.1175/1520-0442(1995)008<0719:AWVCA>2.0.CO;2
    [32]
    Serreze M C, Stroeve J, Barrett A P, et al. 2016. Summer atmospheric circulation anomalies over the Arctic Ocean and their influences on September sea ice extent: a cautionary tale. Journal of Geophysical Research: Atmospheres, 121(19): 11463–11485. doi: 10.1002/2016JD025161
    [33]
    Stroeve J C, Serreze M C, Holland M M, et al. 2012. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110(3): 1005–1027
    [34]
    Vázquez M, Nieto R, Drumond A, et al. 2016. Moisture transport into the Arctic: source-receptor relationships and the roles of atmospheric circulation and evaporation. Journal of Geophysical Research: Atmospheres, 121(22): 13493–13509. doi: 10.1002/2016JD025400
    [35]
    Vázquez M, Nieto R, Drumond A, et al. 2017. Extreme sea ice loss over the Arctic: An Analysis Based on Anomalous Moisture Transport. Atmosphere, 8(2): 32
    [36]
    Zhang Xiangdong, He Juanxiong, Zhang Jing, et al. 2013. Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nature Climate Change, 3(1): 47–51. doi: 10.1038/nclimate1631
    [37]
    Zuo Juncheng, Du Ling, Chen Meixiang, et al. 2018. Data Analysis Methods in Marine Hydrologic Elements (in Chinese). Beijing: Science Press, 31–36
    [38]
    Zwally H J, Gloersen P. 2008. Arctic sea ice surviving the summer melt: interannual variability and decreasing trend. Journal of Glaciology, 54(185): 279–296. doi: 10.3189/002214308784886108
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (513) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return