Citation: | Huan Wang, Zhangxi Hu, Zhaoyang Chai, Yunyan Deng, Zifeng Zhan, Ying Zhong Tang. Blooms of Prorocentrum donghaiense reduced the species diversity of dinoflagellate community[J]. Acta Oceanologica Sinica, 2020, 39(4): 110-119. doi: 10.1007/s13131-020-1585-1 |
[1] |
Anderson D M, Cembella A D, Hallegraeff G M. 2012. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annual Review of Marine Science, 4: 143–176. doi: 10.1146/annurev-marine-120308-081121
|
[2] |
Anderson D M, Glibert P M, Burkholder J M. 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries, 25: 704–726. doi: 10.1007/BF02804901
|
[3] |
Aranda M, Li Y, Liew Y J, et al. 2016. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Scientific Reports, 6: 39734. doi: 10.1038/srep39734
|
[4] |
Burkholder J M, Azanza R V, Sako Y. 2006. The ecology of harmful dinoflagellates. In: Granéli E, Turner J T, eds. Ecology of Harmful Algae. Berlin, Heidelberg: Springer, 53–66
|
[5] |
Chai Zhaoyang, He Zhili, Deng Yunyan, et al. 2018. Cultivation of seaweed Gracilaria lemaneiformis enhanced biodiversity in a eukaryotic plankton community as revealed via metagenomic analyses. Molecular Ecology, 27(4): 1081–1093. doi: 10.1111/mec.14496
|
[6] |
Chai Zhaoyang, Wang Huan, Deng Yunyan, et al. 2020. Harmful algal blooms significantly reduce the resource use efficiency in a coastal plankton community. Science of The Total Environment, 704: 135381. doi: 10.1016/j.scitotenv.2019.135381
|
[7] |
Cui Lei, Lu Xinxin, Dong Yuelei, et al. 2018. Relationship between phytoplankton community succession and environmental parameters in Qinhuangdao coastal areas, China: a region with recurrent brown tide outbreaks. Ecotoxicology and Environmental Safety, 159: 85–93. doi: 10.1016/j.ecoenv.2018.04.043
|
[8] |
Ens E J, French K, Bremner J B. 2009. Evidence for allelopathy as a mechanism of community composition change by an invasive exotic shrub, Chrysanthemoides monilifera spp. rotundata. Plant and Soil, 316(1–2): 125–137. doi: 10.1007/s11104-008-9765-3
|
[9] |
Felpeto A B, Roy S, Vasconcelos V M. 2018. Allelopathy prevents competitive exclusion and promotes phytoplankton biodiversity. Oikos, 127(1): 85–98. doi: 10.1111/oik.04046
|
[10] |
Huse S M, Dethlefsen L, Huber J A, et al. 2008. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genetics, 4(11): e1000255. doi: 10.1371/journal.pgen.1000255
|
[11] |
JOGFS International Project Office. 1994. JGOFS report No. 19. protocols for the Joint Global Ocean Flux Studies (JGOFS) core measurements. Bergen, Norway: JGOFS International Project Office, Center for Studies of Environment and Resources
|
[12] |
Jonsson P R, Pavia H, Toth G. 2009. Formation of harmful algal blooms cannot be explained by allelopathic interactions. Proceedings of the National Academy of Sciences of the United States of America, 106(27): 11177–11182. doi: 10.1073/pnas.0900964106
|
[13] |
Landsberg J H. 2002. The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 10(2): 113–390. doi: 10.1080/20026491051695
|
[14] |
Leão P N, Ramos V, Vale M, et al. 2012. Microbial community changes elicited by exposure to cyanobacterial allelochemicals. Microbial Ecology, 63(1): 85–95. doi: 10.1007/s00248-011-9939-z
|
[15] |
Leão P N, Vasconcelos M T S D, Vasconcelos V M. 2009. Allelopathy in freshwater cyanobacteria. Critical Reviews in Microbiology, 35(4): 271–282. doi: 10.3109/10408410902823705
|
[16] |
Leflaive J, Ten-Hage L. 2007. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biology, 52(2): 199–214. doi: 10.1111/j.1365-2427.2006.01689.x
|
[17] |
Legendre P, Oksanen J, ter Braak C J F. 2011. Testing the significance of canonical axes in redundancy analysis. Methods in Ecology and Evolution, 2(3): 269–277. doi: 10.1111/j.2041-210X.2010.00078.x
|
[18] |
Li Hongmei, Tang Hongjie, Shi Xiaoyong, et al. 2014. Increased nutrient loads from the Changjiang (Yangtze) River have led to increased Harmful Algal Blooms. Harmful Algae, 39: 92–101. doi: 10.1016/j.hal.2014.07.002
|
[19] |
Li Ji, Glibert P M, Zhou Mingjiang, et al. 2009. Relationships between nitrogen and phosphorus forms and ratios and the development of dinoflagellate blooms in the East China Sea. Marine Ecology Progress Series, 383: 11–26. doi: 10.3354/meps07975
|
[20] |
Lin Senjie, Cheng Shifeng, Song Bo, et al. 2015. The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science, 350(6261): 691–694. doi: 10.1126/science.aad0408
|
[21] |
Lin Jianing, Yan Tian, Zhang Qingchun, et al. 2014. In situ detrimental impacts of Prorocentrum donghaiense blooms on zooplankton in the East China Sea. Marine Pollution Bulletin, 88(1–2): 302–310. doi: 10.1016/j.marpolbul.2014.08.026
|
[22] |
Lu Douding, Goebel J, Qi Yuzao, et al. 2005. Morphological and genetic study of Prorocentrum donghaiense Lu from the East China Sea, and comparison with some related Prorocentrum species. Harmful Algae, 4(3): 493–505. doi: 10.1016/j.hal.2004.08.015
|
[23] |
Miao Yu, Wang Zhu, Liao Runhua, et al. 2017. Assessment of phenol effect on microbial community structure and function in an anaerobic denitrifying process treating high concentration nitrate wastewater. Chemical Engineering Journal, 330: 757–763. doi: 10.1016/j.cej.2017.08.011
|
[24] |
Parsons T R, Maita Y, Lalli C M. 1984. A Manual of Chemical & Biological Methods for Seawater Analysis. Oxford: Pergamon Press, 423–453
|
[25] |
Ptacnik R, Solimini A G, Andersen T, et al. 2008. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proceedings of the National Academy of Sciences of the United States of America, 105(13): 5134–5138. doi: 10.1073/pnas.0708328105
|
[26] |
Rozen S, Skaletsky H. 2000. Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz S A, eds. Bioinformatics Methods and Protocols. Totowa: Humana Press, 365-386
|
[27] |
Schneider A R, Gommeaux M, Duclercq J, et al. 2017. Response of bacterial communities to Pb smelter pollution in contrasting soils. Science of the Total Environment, 605-606: 436–444. doi: 10.1016/j.scitotenv.2017.06.159
|
[28] |
Smayda T J. 1990. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Granéli E, Sundström B, Edler L, et al., eds. Toxic Marine Phytoplankton. New York, USA: Elsevier, 29–40
|
[29] |
Smayda T J. 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnology and Oceanography, 42: 1137–1153. doi: 10.4319/lo.1997.42.5_part_2.1137
|
[30] |
State Oceanic Administration. 2001–2015. Bulletin of marine disaster of China (in Chinese). http://www.mnr.gov.cn/sj/sjfw/hy/gbgg/zghyzhgb [2019-12-03/2020-02-24]
|
[31] |
Sun Zhen, Li Guoping, Wang Chengwei, et al. 2014. Community dynamics of prokaryotic and eukaryotic microbes in an estuary reservoir. Scientific Reports, 4: 6966
|
[32] |
Sunagawa S, Coelho L P, Chaffron S, et al. 2015. Structure and function of the global ocean microbiome. Science, 348(6237): 1261359. doi: 10.1126/science.1261359
|
[33] |
Valderrama J C. 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry, 10(2): 109–122. doi: 10.1016/0304-4203(81)90027-X
|
[34] |
Vaulot D, Eikrem W, Viprey M, et al. 2008. The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiology Reviews, 32(5): 795–820. doi: 10.1111/j.1574-6976.2008.00121.x
|
[35] |
West T L, Marshall H G, Tester P A. 1996. Natural phytoplankton community responses to a bloom of the toxic dinoflagellate Gymnodinium breve Davis off the North Carolina coast. Castanea, 61(4): 356–368
|
[36] |
Xu Ning, Duan Shunshan, Li Aifen, et al. 2010. Effects of temperature, salinity and irradiance on the growth of the harmful dinoflagellate Prorocentrum donghaiense Lu. Harmful Algae, 9(1): 13–17. doi: 10.1016/j.hal.2009.06.002
|
[37] |
Xu Xin, Yu Zhiming, Cheng Fangjin, et al. 2017. Molecular diversity and ecological characteristics of the eukaryotic phytoplankton community in the coastal waters of the Bohai Sea, China. Harmful Algae, 61: 13–22. doi: 10.1016/j.hal.2016.11.005
|
[38] |
Yao Weiming, Li Chao, Gao Junzhang. 2006. Red tide plankton along the south coastal area in Zhejiang province. Marine Science Bulletin (in Chinese), 25(3): 87–91
|
[39] |
Zhang Chuansong, Wang Jiangtao, Zhu Dedi, et al. 2008. The preliminary analysis of nutrients in harmful algal blooms in the East China Sea in the spring and summer of 2005. Haiyang Xuebao (in Chinese), 30(3): 153–159
|
[40] |
Zhou Jin, Richlen M L, Sehein T R, et al. 2018. Microbial community structure and associations during a marine dinoflagellate bloom. Frontiers in Microbiology, 9: 1201. doi: 10.3389/fmicb.2018.01201
|
1. | Zhe Tao, Xiaohan Liu, Xiaoying Song, et al. Species and genetic diversity of notorious dinoflagellates Pfiesteria piscicida, Luciella masanensis, and relatives in marine sediments of China. Harmful Algae, 2024, 140: 102746. doi:10.1016/j.hal.2024.102746 | |
2. | Huatao Yuan, Ling Li, Yujie Wang, et al. Succession of diversity, assembly mechanisms, and activities of the microeukaryotic community throughout Scrippsiella acuminata (Dinophyceae) bloom phases. Harmful Algae, 2024, 134: 102626. doi:10.1016/j.hal.2024.102626 | |
3. | Yu Jin Kim, Hyun-Jung Kim, Taek-Kyun Lee, et al. Determining ecological interactions of key dinoflagellate species using an intensive metabarcoding approach in a semi-closed coastal ecosystem of South Korea. Harmful Algae, 2024, 138: 102698. doi:10.1016/j.hal.2024.102698 | |
4. | Gao Meng, Zhao Chen, Yuzhen Wang, et al. Effect of Picochlorum sp. addition on water quality, microalgae community composition and production performance in the culture of Litopenaeus vannamei. Aquaculture International, 2024, 32(7): 10159. doi:10.1007/s10499-024-01655-5 | |
5. | Hao Wang, Alexander F. Bouwman, Junjie Wang, et al. Competitive advantages of HAB species under changing environmental conditions in the coastal waters of the Bohai Sea, Yellow Sea and East China Sea. Continental Shelf Research, 2023, 259: 104991. doi:10.1016/j.csr.2023.104991 | |
6. | Hao Wang, Alexander F. Bouwman, Junjie Wang, et al. Competitive Advantages of Hab Species Under Changing Environmental Conditions in the Coastal Waters of the Bohai Sea, Yellow Sea and East China Sea. SSRN Electronic Journal, 2022. doi:10.2139/ssrn.4123868 | |
7. | You Zhou, Jiyun She, Xiongmei Zhu. Dynamic analysis of biodiversity, carbon storage and environmental factors of coniferous forest in Loudi City, Hunan Province. International Journal of Low-Carbon Technologies, 2022, 17: 831. doi:10.1093/ijlct/ctac037 | |
8. | Liyan He, Zhiming Yu, Jianan Zhu, et al. Nanostructure and Nanomechanics of Prorocentrum donghaiense and Their Changes Under Nitrogen Limitation by Atomic Force Microscopy. Frontiers in Marine Science, 2022, 9 doi:10.3389/fmars.2022.874888 | |
9. | Yongjun Wei, Shan Jiang, Lingmin Tian, et al. Benthic microbial biogeography along the continental shelf shaped by substrates from the Changjiang River plume. Acta Oceanologica Sinica, 2022, 41(1): 118. doi:10.1007/s13131-021-1861-8 | |
10. | Jinju Ma, Chunyun Zhang, Fuguo Liu, et al. Easy detection of Prorocentrum donghaiense by polymerase chain reaction-nucleic acid chromatography strip. Environmental Science and Pollution Research, 2022, 30(4): 10346. doi:10.1007/s11356-022-22856-6 | |
11. | Bi‐Lin Lai, Zhi‐Hui Xiao, Peng‐Yang Jiang, et al. Two‐Dimensional Ag−Fe−N/C Nanosheets as Efficient Cathode Catalyst to Improve Power‐Generation Performance of Microbial Fuel Cells. ChemElectroChem, 2022, 9(6) doi:10.1002/celc.202101699 | |
12. | Zhangxi Hu, Yuyang Liu, Yunyan Deng, et al. The Notorious Harmful Algal Blooms-Forming Dinoflagellate Prorocentrum donghaiense Produces Sexual Resting Cysts, Which Widely Distribute Along the Coastal Marine Sediment of China. Frontiers in Marine Science, 2022, 9 doi:10.3389/fmars.2022.826736 | |
13. | Zhangxi Hu, Ning Xu, Haifeng Gu, et al. Morpho-molecular description of a new HAB species, Pseudocochlodinium profundisulcus gen. et sp. nov., and its LSU rRNA gene based genetic diversity and geographical distribution. Harmful Algae, 2021, 108: 102098. doi:10.1016/j.hal.2021.102098 | |
14. | Yuyang Liu, Zhangxi Hu, Yunyan Deng, et al. Dependence of genome size and copy number of rRNA gene on cell volume in dinoflagellates. Harmful Algae, 2021, 109: 102108. doi:10.1016/j.hal.2021.102108 | |
15. | Jihen Elleuch, Mohamed Barkallah, Kirsty F. Smith, et al. Quantitative PCR assay for the simultaneous identification and enumeration of multiple Karenia species. Environmental Science and Pollution Research, 2020, 27(29): 36889. doi:10.1007/s11356-020-09739-4 | |
16. | Tiantian Chen, Yun Liu, Sha Xu, et al. Variation of Amoebophrya community during bloom of Prorocentrum donghaiense Lu in coastal waters of the East China Sea. Estuarine, Coastal and Shelf Science, 2020, 243: 106887. doi:10.1016/j.ecss.2020.106887 |