Volume 39 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
Dan Xu, Zhiyuan Li, Zhanhong Wan, Zongfu Ren, Zhongshui Zou, Xiuyang Lv, Shizhu Luo. The oceanic responses to Typhoon Rananim on the East China Sea[J]. Acta Oceanologica Sinica, 2020, 39(7): 69-78. doi: 10.1007/s13131-020-1573-5
Citation: Dan Xu, Zhiyuan Li, Zhanhong Wan, Zongfu Ren, Zhongshui Zou, Xiuyang Lv, Shizhu Luo. The oceanic responses to Typhoon Rananim on the East China Sea[J]. Acta Oceanologica Sinica, 2020, 39(7): 69-78. doi: 10.1007/s13131-020-1573-5

The oceanic responses to Typhoon Rananim on the East China Sea

doi: 10.1007/s13131-020-1573-5
Funds:  The National Key Research and Development Program of China under contract Nos 2016YFC0402303 and 2017YFC1403300; the National Natural Science Foundation of China under contract Nos 11572283, 11602179 and 41806028; the Public Science and Technology Research Funds Projects of Ocean under contract No. 20110518-5.
More Information
  • Corresponding author: Zhongshui Zou & Zhanhong Wan; E-mail: zouzhongshui@126com, wanzhanhong@zju.edu.cn; Zhongshui Zou & Zhanhong Wan; E-mail: zouzhongshui@126com, wanzhanhong@zju.edu.cn
  • Received Date: 2019-03-31
  • Accepted Date: 2019-09-27
  • Available Online: 2020-12-28
  • Publish Date: 2020-07-25
  • Many typhoons pass through the East China Sea (ECS) and the oceanic responses to typhoons on the ECS shelf are very energetic. However, these responses are not well studied because of the complicated background oceanic environment. The sea surface temperature (SST) response to a severe Typhoon Rananim in August 2004 on the ECS shelf was observed by the merged cloud-penetrating microwave and infrared SST data. The observed SST response shows an extensive SST cooling with a maximum cooling of 3°C on the ECS shelf and the SST cooling lags the typhoon by about one day. A numerical model is designed to simulate the oceanic responses to Rananim. The numerical model reasonably simulates the observed SST response and thereby provides a more comprehensive investigation on the oceanic temperature and current responses. The simulation shows that Rananim deepens the ocean mix layer by more than 10 m on the ECS shelf and causes a cooling in the whole mixed layer. Both upwelling and entrainment are responsible for the cooling. Rananim significantly deforms the background Taiwan Warm Current on the ECS shelf and generates strong Ekman current at the surface. After the typhoon disappears, the surface current rotates clockwise and vertically, the current is featured by near inertial oscillation with upward propagating phase.
  • loading
  • [1]
    Bleck R. 2002. An oceanic general circulation model framed in hybrid isopycnic-Cartesian Coordinates. Ocean Modelling, 4(1): 55–88. doi: 10.1016/S1463-5003(01)00012-9
    [2]
    Brink K H. 1989. Observations of the response of thermocline currents to a hurricane. Journal of Physical Oceanography, 19(7): 1017–1022. doi: 10.1175/1520-0485(1989)019<1017:OOTROT>2.0.CO;2
    [3]
    Brooks D A. 1983. The wake of Hurricane Allen in the western Gulf of Mexico. Journal of Physical Oceanography, 13(1): 117–129. doi: 10.1175/1520-0485(1983)013<0117:TWOHAI>2.0.CO;2
    [4]
    Chiang T L, Wu C R, Oey L Y. 2011. Typhoon Kai-Tak: An ocean’s perfect storm. Journal of Physical Oceanography, 41(1): 221–233. doi: 10.1175/2010JPO4518.1
    [5]
    D’Asaro E A, Sanford T B, Niiler P P, et al. 2007. Cold wake of hurricane Frances. Geophysical Research Letters, 34(15): L15609
    [6]
    Denman K L, Peña M A. 2002. The response of two coupled one-dimensional mixed layer/planktonic ecosystem models to climate change in the NE subarctic Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 49(24–25): 5739–5757. doi: 10.1016/S0967-0645(02)00212-6
    [7]
    Emanuel K A. 1999. Thermodynamic control of hurricane intensity. Nature, 401(6754): 665–669. doi: 10.1038/44326
    [8]
    Gentemann C L, Meissner T, Wentz F J. 2010. Accuracy of satellite sea surface temperatures at 7 and 11 GHz. IEEE Transactions on Geoscience and Remote Sensing, 48(3): 1009–1018. doi: 10.1109/TGRS.2009.2030322
    [9]
    Jacob S D, Shay L K, Mariano A J, et al. 2000. The 3D oceanic mixed layer response to Hurricane Gilbert. Journal of Physical Oceanography, 30(6): 1407–1429. doi: 10.1175/1520-0485(2000)030<1407:TOMLRT>2.0.CO;2
    [10]
    Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [11]
    Ko D S, Chao S Y, Wu C C, et al. 2014. Impacts of Typhoon Megi (2010) on the South China Sea. Journal of Geophysical Research: Oceans, 119(7): 4474–4489. doi: 10.1002/2013JC009785
    [12]
    Li Zhiyuan, Huang Daji, Xing Chuanxi, et al. 2019. The synoptic variation of Yellow Sea Warm Current in winter and its mechanisms. International Journal of Numerical Methods for Heat & Fluid Flow, 29(2): 724–737
    [13]
    Li Zhiyuan, Huang Daji. 2019. Sea surface height and current responses to synoptic winter wind in the Bohai, Yellow, and East China Seas: Two leading coastal trapped waves. Journal of Geophysical Research: Oceans, 124(4): 2289–2312. doi: 10.1029/2018JC014120
    [14]
    Li Yongping, Xue Huijie, Bane J M. 2002. Air-sea interactions during the passage of a winter storm over the Gulf Stream: A three-dimensional coupled atmosphere-ocean model study. Journal of Geophysical Research: Oceans, 107(C11): 3200. doi: 10.1029/2001JC001161
    [15]
    Marshall J, Adcroft A, Hill C, et al. 1997. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research: Oceans, 102(C3): 5753–5766. doi: 10.1029/96JC02775
    [16]
    Price J F. 1981. Upper ocean response to a hurricane. Journal of Physical Oceanography, 11(2): 153–175. doi: 10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
    [17]
    Price J F. 1983. Internal wave wake of a moving storm. Part I. Scales, energy budget and observations. Journal of Physical Oceanography, 13(6): 949–965. doi: 10.1175/1520-0485(1983)013<0949:IWWOAM>2.0.CO;2
    [18]
    Shay L K, Elsberry R L. 1987. Near-inertial ocean current response to Hurricane Frederic. Journal of Physical Oceanography, 17(8): 1249–1269. doi: 10.1175/1520-0485(1987)017<1249:NIOCRT>2.0.CO;2
    [19]
    Shay L K. 2010. Air-sea interactions in tropical cyclones. Global Perspectives on Tropical Cyclones, 4: 93–131
    [20]
    Tsai Y, Chern C S, Wang J. 2008. Typhoon induced upper ocean cooling off northeastern Taiwan. Geophysical Research Letters, 35(14): L14605. doi: 10.1029/2008GL034368
    [21]
    Wada A, Kunii M. 2017. The role of ocean-atmosphere interaction in Typhoon Sinlaku (2008) using a regional coupled data assimilation system. Journal of Geophysical Research: Oceans, 122(5): 3675–3695. doi: 10.1002/2017JC012750
    [22]
    Wentz F J, Gentemann C, Smith D, et al. 2000. Satellite measurements of sea surface temperature through clouds. Science, 288(5467): 847–850
    [23]
    Wright R. 1969. Temperature structure across the Kuroshio before and after typhoon Shirley. Tellus, 21(3): 409–413. doi: 10.3402/tellusa.v21i3.10096
    [24]
    Yang Bing, Hou Yijun, Hu Po, et al. 2015. Shallow ocean response to tropical cyclones observed on the continental shelf of the northwestern South China Sea. Journal of Geophysical Research: Oceans, 120(5): 3817–3836. doi: 10.1002/2015JC010783
    [25]
    Zhang Han, Chen Dake, Zhou Lei, et al. 2016. Upper ocean response to typhoon Kalmaegi (2014). Journal of Geophysical Research: Oceans, 121(8): 6520–6535. doi: 10.1002/2016JC012064
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (208) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return