Citation: | Chuyan Zhao, Yan Zhang, Jun Tang, Yongming Shen. Numerical investigation of solitary wave run-up attenuation by patchy vegetation[J]. Acta Oceanologica Sinica, 2020, 39(5): 105-114. doi: 10.1007/s13131-020-1572-6 |
[1] |
Duarte C M, Losada I J, Hendriks I E, et al. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3(11): 961–968. doi: 10.1038/nclimate1970
|
[2] |
Fonseca M S, Koehl M A R. 2006. Flow in seagrass canopies: The influence of patch width. Estuarine, Coastal and Shelf Science, 67(1–2): 1–9. doi: 10.1016/j.ecss.2005.09.018
|
[3] |
Hansen J B, Svendsen I A. 1979. Regular waves in shoaling water: Experimental data. Series Paper 21, ISVA. Denmark: Technical University of Denmark
|
[4] |
Irish J L, Weiss R, Yang Yongqian, et al. 2014. Laboratory experiments of tsunami run-up and withdrawal in patchy coastal forest on a steep beach. Natural Hazards, 74(3): 1933–1949. doi: 10.1007/s11069-014-1286-1
|
[5] |
Irtem E, Gedik N, Kabdasli M S, et al. 2009. Coastal forest effects on tsunami run-up heights. Ocean Engineering, 36(3–4): 313–320. doi: 10.1016/j.oceaneng.2008.11.007
|
[6] |
Kim D H, Lynett P J, Socolofsky S A. 2009. A depth-integrated model for weakly dispersive, turbulent, and rotational fluid flows. Ocean Modelling, 27(3–4): 198–214. doi: 10.1016/j.ocemod.2009.01.005
|
[7] |
Kobayashi N, Karjadi E A, Johnson B D. 1997. Dispersion effects on longshore currents in surf zones. Journal of Waterway, Port, Coastal, and Ocean Engineering, 123(5): 240–248. doi: 10.1061/(ASCE)0733-950X(1997)123:5(240)
|
[8] |
Liu Zhongbo, Fang Kezhao. 2016. A new two-layer Boussinesq model for coastal waves from deep to shallow water: Derivation and analysis. Wave Motion, 67: 1–14. doi: 10.1016/j.wavemoti.2016.07.002
|
[9] |
Liu Zhongbo, Fang Kezhao. 2019. Numerical verification of a two-layer Boussinesq-type model for surface gravity wave evolution. Wave Motion, 85: 98–113. doi: 10.1016/j.wavemoti.2018.11.007
|
[10] |
Liu Zhongbo, Fang Kezhao, Cheng Y Z. 2018. A new multi-layer irrotational Boussinesq-type model for highly nonlinear and dispersive surface waves over a mildly sloping seabed. Journal of Fluid Mechanics, 842: 323–353. doi: 10.1017/jfm.2018.99
|
[11] |
Lynett P J, Wu T R, Liu P L F. 2002. Modeling wave runup with depth-integrated equations. Coastal Engineering, 46(2): 89–107. doi: 10.1016/S0378-3839(02)00043-1
|
[12] |
Maza M, Lara J L, Losada I J. 2016. Solitary wave attenuation by vegetation patches. Advances in Water Resources, 98: 159–172. doi: 10.1016/j.advwatres.2016.10.021
|
[13] |
Mori N, Takahashi T, Yasuda T, et al. 2011. Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophysical research letters, 38(7): L00G14
|
[14] |
Stone B M, Shen H T. 2002. Hydraulic resistance of flow in channels with cylindrical roughness. Journal of Hydraulic Engineering, 128(5): 500–506. doi: 10.1061/(ASCE)0733-9429(2002)128:5(500)
|
[15] |
Tanaka N. 2009. Vegetation bioshields for tsunami mitigation: Review of effectiveness, limitations, construction, and sustainable management. Landscape and Ecological Engineering, 5(1): 71–79. doi: 10.1007/s11355-008-0058-z
|
[16] |
Tang Jun, Causon D, Mingham C, et al. 2013. Numerical study of vegetation damping effects on solitary wave run-up using the nonlinear shallow water equations. Coastal Engineering, 75: 21–28. doi: 10.1016/j.coastaleng.2013.01.002
|
[17] |
Tang Jun, Shen Yongming, Causon D M, et al. 2017. Numerical study of periodic long wave run-up on a rigid vegetation sloping beach. Coastal Engineering, 121: 158–166. doi: 10.1016/j.coastaleng.2016.12.004
|
[18] |
Temmerman S, Meire P, Bouma T J, et al. 2013. Ecosystem-based coastal defence in the face of global change. Nature, 504(7478): 79–83. doi: 10.1038/nature12859
|
[19] |
Thuy N B, Nandasena N A K, Dang V H, et al. 2018. Simplified formulae for designing coastal forest against tsunami run-up: one-dimensional approach. Natural Hazards, 92(1): 327–346. doi: 10.1007/s11069-018-3197-z
|
[20] |
Tsai C P, Chen Y C, Sihombing T O, et al. 2017. Simulations of moving effect of coastal vegetation on tsunami damping. Natural Hazards and Earth System Sciences, 17(5): 693–702. doi: 10.5194/nhess-17-693-2017
|
[21] |
Vandenbruwaene W, Temmerman S, Bouma T J, et al. 2011. Flow interaction with dynamic vegetation patches: Implications for biogeomorphic evolution of a tidal landscape. Journal of Geophysical Research: Earth Surface, 116(F1): F01008
|
[22] |
Yang Yongqian, Irish J L, Weiss R. 2017. Impact of patchy vegetation on tsunami dynamics. Journal of Waterway, Port, Coastal, and Ocean Engineering, 143(4): 04017005. doi: 10.1061/(ASCE)WW.1943-5460.0000380
|
[23] |
Yang Zhiyong, Tang Jun, Shen Yongming. 2018. Numerical study for vegetation effects on coastal wave propagation by using nonlinear Boussinesq model. Applied Ocean Research, 70: 32–40. doi: 10.1016/j.apor.2017.09.001
|
[24] |
Yao Yu, Du Ruichao, Jiang Changbo, et al. 2015. Experimental study of reduction of solitary wave run-up by emergent rigid vegetation on a beach. Journal of Earthquake and Tsunami, 9(5): 1540003. doi: 10.1142/S1793431115400035
|
[25] |
Yao Yu, Tang Zhengjiang, Jiang Changbo, et al. 2018. Boussinesq modeling of solitary wave run-up reduction by emergent vegetation on a sloping beach. Journal of Hydro-environment Research, 19: 78–87. doi: 10.1016/j.jher.2018.03.001
|
[26] |
Zainali A, Marivela R, Weiss R, et al. 2018. Numerical simulation of nonlinear long waves in the presence of discontinuous coastal vegetation. Marine Geology, 396: 142–149. doi: 10.1016/j.margeo.2017.08.001
|
[27] |
Zhang Mingliang, Li C W, Shen Yongming. 2010. A 3D non-linear k-ε turbulent model for prediction of flow and mass transport in channel with vegetation. Applied Mathematical Modelling, 34(4): 1021–1031. doi: 10.1016/j.apm.2009.07.010
|
[28] |
Zhang Mingliang, Li C W, Shen Yongming. 2013. Depth-averaged modeling of free surface flows in open channels with emerged and submerged vegetation. Applied Mathematical Modelling, 37(1–2): 540–553. doi: 10.1016/j.apm.2012.02.049
|