Citation: | Bao Wang, Bin Wang, Wenzhou Wu, Changbai Xi, Jiechen Wang. Sea-water-level prediction via combined wavelet decomposition, neuro-fuzzy and neural networks using SLA and wind information[J]. Acta Oceanologica Sinica, 2020, 39(5): 157-167. doi: 10.1007/s13131-020-1569-1 |
[1] |
Balas C E, Koç M L, Tür R. 2010. Artificial neural networks based on principal component analysis, fuzzy systems and fuzzy neural networks for preliminary design of rubble mound breakwaters. Applied Ocean Research, 32(4): 425–433. doi: 10.1016/j.apor.2010.09.005
|
[2] |
Bodyanskiy Y, Vynokurova O. 2013. Hybrid adaptive wavelet-neuro-fuzzy system for chaotic time series identification. Information Sciences, 220: 170–179. doi: 10.1016/j.ins.2012.07.044
|
[3] |
Chen B F, Wang H D, Chu C. 2007. Wavelet and artificial neural network analyses of tide forecasting and supplement of tides around Taiwan and South China Sea. Ocean Engineering, 34(16): 2161–2175. doi: 10.1016/j.oceaneng.2007.04.003
|
[4] |
Dixit P, Londhe S, Dandawate Y. 2015. Removing prediction lag in wave height forecasting using Neuro-Wavelet modeling technique. Ocean Engineering, 93: 74–83. doi: 10.1016/j.oceaneng.2014.10.009
|
[5] |
El-Diasty M, Al-Harbi S. 2015. Development of wavelet network model for accurate water levels prediction with meteorological effects. Applied Ocean Research, 53: 228–235. doi: 10.1016/j.apor.2015.09.008
|
[6] |
El-Diasty M, Al-Harbi S, Pagiatakis S. 2018. Hybrid harmonic analysis and wavelet network model for sea water level prediction. Applied Ocean Research, 70: 14–21. doi: 10.1016/j.apor.2017.11.007
|
[7] |
Filippo A, Torres AR Jr, Kjerfve B, et al. 2012. Application of Artificial Neural Network (ANN) to improve forecasting of sea level. Ocean & Coastal Management, 55: 101–110
|
[8] |
Hong Y T, White P A. 2009. Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm. Advances in Water Resources, 32(1): 110–119. doi: 10.1016/j.advwatres.2008.10.006
|
[9] |
Huang Wenrui, Murray C, Kraus N, et al. 2003. Development of a regional neural network for coastal water level predictions. Ocean Engineering, 30(17): 2275–2295. doi: 10.1016/S0029-8018(03)00083-0
|
[10] |
Imani M, Kao H C, Lan W, et al. 2018. Daily sea level prediction at Chiayi coast, Taiwan using extreme learning machine and relevance vector machine. Global and Planetary Change, 161: 211–221. doi: 10.1016/j.gloplacha.2017.12.018
|
[11] |
Karimi S, Kisi O, Shiri J, et al. 2013. Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia. Computers & Geosciences, 52: 50–59
|
[12] |
Kazeminezhad M H, Etemad-Shahidi A, Mousavi S J. 2005. Application of fuzzy inference system in the prediction of wave parameters. Ocean Engineering, 32(14–15): 1709–1725. doi: 10.1016/j.oceaneng.2005.02.001
|
[13] |
Kim S, Matsumi Y, Pan Shunqi, et al. 2016. A real-time forecast model using artificial neural network for after-runner storm surges on the Tottori coast, Japan. Ocean Engineering, 122: 44–53. doi: 10.1016/j.oceaneng.2016.06.017
|
[14] |
Kisi O. 2005. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrological Sciences Journal, 50(4): 696
|
[15] |
Lee T L. 2006. Neural network prediction of a storm surge. Ocean Engineering, 33(3–4): 483–494. doi: 10.1016/j.oceaneng.2005.04.012
|
[16] |
Lee T L. 2008. Back-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, Taiwan. Engineering Applications of Artificial Intelligence, 21(1): 63–72. doi: 10.1016/j.engappai.2007.03.002
|
[17] |
Lee T L, Jeng D S. 2002. Application of artificial neural networks in tide-forecasting. Ocean Engineering, 29(9): 1003–1022. doi: 10.1016/S0029-8018(01)00068-3
|
[18] |
Lee T L, Makarynskyy O, Shao Chenchi. 2007. A combined harmonic analysis-artificial neural network methodology for tidal predictions. Journal of Coastal Research, 23(3): 764–770
|
[19] |
Liang S X, Li M C, Sun Z C. 2008. Prediction models for tidal level including strong meteorologic effects using a neural network. Ocean Engineering, 35(7): 666–675. doi: 10.1016/j.oceaneng.2007.12.006
|
[20] |
Malekmohamadi I, Bazargan-Lari M R, Kerachian R, et al. 2011. Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height prediction. Ocean Engineering, 38(2-3): 487–497. doi: 10.1016/j.oceaneng.2010.11.020
|
[21] |
Mok K M, Lai U H, Hoi K I. 2016. Development of an adaptive Kalman filter-based storm tide forecasting model. Journal of Hydrodynamics, 28(6): 1029–1036. doi: 10.1016/S1001-6058(16)60707-2
|
[22] |
Nitsure S P, Londhe S N, Khare K C. 2012. Wave forecasts using wind information and genetic programming. Ocean Engineering, 54: 61–69. doi: 10.1016/j.oceaneng.2012.07.017
|
[23] |
Nitsure S P, Londhe S N, Khare K C. 2014. Prediction of sea water levels using wind information and soft computing techniques. Applied Ocean Research, 47: 344–351. doi: 10.1016/j.apor.2014.07.003
|
[24] |
Nourani V, Alami M T, Aminfar M H. 2009. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Engineering Applications of Artificial Intelligence, 22(3): 466–472. doi: 10.1016/j.engappai.2008.09.003
|
[25] |
Oh J, Suh K D. 2018. Real-time forecasting of wave heights using EOF -wavelet-neural network hybrid model. Ocean Engineering, 150: 48–59. doi: 10.1016/j.oceaneng.2017.12.044
|
[26] |
Rajasekaran S, Gayathri S, Lee T L. 2008. Support vector regression methodology for storm surge predictions. Ocean Engineering, 35(16): 1578–1587. doi: 10.1016/j.oceaneng.2008.08.004
|
[27] |
Rajasekaran S, Lee T L, Jeng D S. 2005. Tidal Level Forecasting during Typhoon Surge Using Functional and Sequential Learning Neural Networks. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131(6): 321–324. doi: 10.1061/(ASCE)0733-950X(2005)131:6(321)
|
[28] |
Rajasekaran S, Thiruvenkatasamy K, Lee T L. 2006. Tidal level forecasting using functional and sequential learning neural networks. Applied Mathematical Modelling, 30(1): 85–103. doi: 10.1016/j.apm.2005.03.020
|
[29] |
Röske F. 1997. Sea level forecasts using neural networks. Deutsche Hydrografische Zeitschrift, 49(1): 71–99. doi: 10.1007/BF02765119
|
[30] |
Seo Y, Kim S, Kisi O, et al. 2015. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. Journal of Hydrology, 520: 224–243. doi: 10.1016/j.jhydrol.2014.11.050
|
[31] |
Shiri J, Makarynskyy O, Kisi O, et al. 2011. Prediction of short-term operational water levels using an adaptive neuro-fuzzy inference system. Journal of Waterway, Port, Coastal, and Ocean Engineering, 137(6): 344–354. doi: 10.1061/(ASCE)WW.1943-5460.0000097
|
[32] |
Solgi A, Pourhaghi A, Bahmani R, et al. 2017. Improving SVR and ANFIS performance using wavelet transform and PCA algorithm for modeling and predicting biochemical oxygen demand (BOD). Ecohydrology & Hydrobiology, 17(2): 164–175
|
[33] |
Tsai, C P, Lee T L. 2001. Back-propagation neural network in tidal-level forecasting. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125(4): 54–55
|
[34] |
Veltcheva A, Guedes S C. 2015. Wavelet analysis of non-stationary sea waves during Hurricane Camille. Ocean Engineering, 95: 166–174. doi: 10.1016/j.oceaneng.2014.11.035
|
[35] |
Vivekanandan N, Singh C B. 2003. Prediction of tides using hydrodynamic and neural network approaches. Indian Journal of Geo-Marine Sciences, 32(1): 25–30
|
[36] |
Yadav B, Eliza K. 2017. A hybrid wavelet-support vector machine model for prediction of Lake water level fluctuations using hydro-meteorological data. Measurement, 103: 294–301. doi: 10.1016/j.measurement.2017.03.003
|
[37] |
Yin Jianchuan, Li Lianbo, Cao Yuchi, et al. 2016. An adaptive online sequential extreme learning machine for real-time tidal level prediction. In: Cao J, Mao K, Wu J., et al, eds. Proceedings of ELM-2015 Volume 2. Cham: Springer International Publishing, 55-66
|
[38] |
Yin Jianchuan, Wang Nini, Hu Jiangqiang. 2015. A hybrid real-time tidal prediction mechanism based on harmonic method and variable structure neural network. Engineering Applications of Artificial Intelligence, 41: 223–231. doi: 10.1016/j.engappai.2015.03.002
|
[39] |
Zhang Zeguo, Yin Jianchuan, Wang Nini, et al. 2017. A precise tidal prediction mechanism based on the combination of harmonic analysis and adaptive network-based fuzzy inference system model. Acta Oceanologica Sinica, 36(11): 94–105. doi: 10.1007/s13131-017-1140-x
|