Volume 39 Issue 5
May  2020
Turn off MathJax
Article Contents
Bao Wang, Bin Wang, Wenzhou Wu, Changbai Xi, Jiechen Wang. Sea-water-level prediction via combined wavelet decomposition, neuro-fuzzy and neural networks using SLA and wind information[J]. Acta Oceanologica Sinica, 2020, 39(5): 157-167. doi: 10.1007/s13131-020-1569-1
Citation: Bao Wang, Bin Wang, Wenzhou Wu, Changbai Xi, Jiechen Wang. Sea-water-level prediction via combined wavelet decomposition, neuro-fuzzy and neural networks using SLA and wind information[J]. Acta Oceanologica Sinica, 2020, 39(5): 157-167. doi: 10.1007/s13131-020-1569-1

Sea-water-level prediction via combined wavelet decomposition, neuro-fuzzy and neural networks using SLA and wind information

doi: 10.1007/s13131-020-1569-1
Funds:  The National Key R&D Program of China under contract No. 2016YFC1402609.
More Information
  • Corresponding author: E-mail: wangjiechen@nju.edu.cn
  • Received Date: 2019-02-08
  • Accepted Date: 2019-11-19
  • Available Online: 2020-12-28
  • Publish Date: 2020-05-25
  • Sea-water-level (SWL) prediction significantly impacts human lives and maritime activities in coastal regions, particularly at offshore locations with shallow water levels. Long-term SWL forecasts, which are conventionally obtained via harmonic analysis, become ineffective when nonperiodic meteorological events predominate. Artificial intelligence combined with other data-processing methods can effectively forecast highly nonlinear and nonstationary inflow patterns by recognizing historical relationships between input and output. These techniques are considerably useful in time-series data predictions. This paper reports the development of a hybrid model to realize accurate multihour SWL forecasting by combining an adaptive neuro-fuzzy inference system (ANFIS) with wavelet decomposition while using sea-level anomaly (SLA) and wind-shear-velocity components as inputs. Numerous wavelet-ANFIS (WANFIS) models have been tested using different inputs to assess their applicability as alternatives to the artificial neural network (ANN), wavelet ANN (WANN), and ANFIS models. Different error definitions have been used to evaluate results, which indicate that integrated wavelet-decomposition and ANFIS models improve the accuracy of SWL prediction and that the inputs of SLA and wind-shear velocity exhibit superior prediction capability compared to conventional SWL-only models.
  • loading
  • [1]
    Balas C E, Koç M L, Tür R. 2010. Artificial neural networks based on principal component analysis, fuzzy systems and fuzzy neural networks for preliminary design of rubble mound breakwaters. Applied Ocean Research, 32(4): 425–433. doi: 10.1016/j.apor.2010.09.005
    [2]
    Bodyanskiy Y, Vynokurova O. 2013. Hybrid adaptive wavelet-neuro-fuzzy system for chaotic time series identification. Information Sciences, 220: 170–179. doi: 10.1016/j.ins.2012.07.044
    [3]
    Chen B F, Wang H D, Chu C. 2007. Wavelet and artificial neural network analyses of tide forecasting and supplement of tides around Taiwan and South China Sea. Ocean Engineering, 34(16): 2161–2175. doi: 10.1016/j.oceaneng.2007.04.003
    [4]
    Dixit P, Londhe S, Dandawate Y. 2015. Removing prediction lag in wave height forecasting using Neuro-Wavelet modeling technique. Ocean Engineering, 93: 74–83. doi: 10.1016/j.oceaneng.2014.10.009
    [5]
    El-Diasty M, Al-Harbi S. 2015. Development of wavelet network model for accurate water levels prediction with meteorological effects. Applied Ocean Research, 53: 228–235. doi: 10.1016/j.apor.2015.09.008
    [6]
    El-Diasty M, Al-Harbi S, Pagiatakis S. 2018. Hybrid harmonic analysis and wavelet network model for sea water level prediction. Applied Ocean Research, 70: 14–21. doi: 10.1016/j.apor.2017.11.007
    [7]
    Filippo A, Torres AR Jr, Kjerfve B, et al. 2012. Application of Artificial Neural Network (ANN) to improve forecasting of sea level. Ocean & Coastal Management, 55: 101–110
    [8]
    Hong Y T, White P A. 2009. Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm. Advances in Water Resources, 32(1): 110–119. doi: 10.1016/j.advwatres.2008.10.006
    [9]
    Huang Wenrui, Murray C, Kraus N, et al. 2003. Development of a regional neural network for coastal water level predictions. Ocean Engineering, 30(17): 2275–2295. doi: 10.1016/S0029-8018(03)00083-0
    [10]
    Imani M, Kao H C, Lan W, et al. 2018. Daily sea level prediction at Chiayi coast, Taiwan using extreme learning machine and relevance vector machine. Global and Planetary Change, 161: 211–221. doi: 10.1016/j.gloplacha.2017.12.018
    [11]
    Karimi S, Kisi O, Shiri J, et al. 2013. Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia. Computers & Geosciences, 52: 50–59
    [12]
    Kazeminezhad M H, Etemad-Shahidi A, Mousavi S J. 2005. Application of fuzzy inference system in the prediction of wave parameters. Ocean Engineering, 32(14–15): 1709–1725. doi: 10.1016/j.oceaneng.2005.02.001
    [13]
    Kim S, Matsumi Y, Pan Shunqi, et al. 2016. A real-time forecast model using artificial neural network for after-runner storm surges on the Tottori coast, Japan. Ocean Engineering, 122: 44–53. doi: 10.1016/j.oceaneng.2016.06.017
    [14]
    Kisi O. 2005. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrological Sciences Journal, 50(4): 696
    [15]
    Lee T L. 2006. Neural network prediction of a storm surge. Ocean Engineering, 33(3–4): 483–494. doi: 10.1016/j.oceaneng.2005.04.012
    [16]
    Lee T L. 2008. Back-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, Taiwan. Engineering Applications of Artificial Intelligence, 21(1): 63–72. doi: 10.1016/j.engappai.2007.03.002
    [17]
    Lee T L, Jeng D S. 2002. Application of artificial neural networks in tide-forecasting. Ocean Engineering, 29(9): 1003–1022. doi: 10.1016/S0029-8018(01)00068-3
    [18]
    Lee T L, Makarynskyy O, Shao Chenchi. 2007. A combined harmonic analysis-artificial neural network methodology for tidal predictions. Journal of Coastal Research, 23(3): 764–770
    [19]
    Liang S X, Li M C, Sun Z C. 2008. Prediction models for tidal level including strong meteorologic effects using a neural network. Ocean Engineering, 35(7): 666–675. doi: 10.1016/j.oceaneng.2007.12.006
    [20]
    Malekmohamadi I, Bazargan-Lari M R, Kerachian R, et al. 2011. Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height prediction. Ocean Engineering, 38(2-3): 487–497. doi: 10.1016/j.oceaneng.2010.11.020
    [21]
    Mok K M, Lai U H, Hoi K I. 2016. Development of an adaptive Kalman filter-based storm tide forecasting model. Journal of Hydrodynamics, 28(6): 1029–1036. doi: 10.1016/S1001-6058(16)60707-2
    [22]
    Nitsure S P, Londhe S N, Khare K C. 2012. Wave forecasts using wind information and genetic programming. Ocean Engineering, 54: 61–69. doi: 10.1016/j.oceaneng.2012.07.017
    [23]
    Nitsure S P, Londhe S N, Khare K C. 2014. Prediction of sea water levels using wind information and soft computing techniques. Applied Ocean Research, 47: 344–351. doi: 10.1016/j.apor.2014.07.003
    [24]
    Nourani V, Alami M T, Aminfar M H. 2009. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Engineering Applications of Artificial Intelligence, 22(3): 466–472. doi: 10.1016/j.engappai.2008.09.003
    [25]
    Oh J, Suh K D. 2018. Real-time forecasting of wave heights using EOF -wavelet-neural network hybrid model. Ocean Engineering, 150: 48–59. doi: 10.1016/j.oceaneng.2017.12.044
    [26]
    Rajasekaran S, Gayathri S, Lee T L. 2008. Support vector regression methodology for storm surge predictions. Ocean Engineering, 35(16): 1578–1587. doi: 10.1016/j.oceaneng.2008.08.004
    [27]
    Rajasekaran S, Lee T L, Jeng D S. 2005. Tidal Level Forecasting during Typhoon Surge Using Functional and Sequential Learning Neural Networks. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131(6): 321–324. doi: 10.1061/(ASCE)0733-950X(2005)131:6(321)
    [28]
    Rajasekaran S, Thiruvenkatasamy K, Lee T L. 2006. Tidal level forecasting using functional and sequential learning neural networks. Applied Mathematical Modelling, 30(1): 85–103. doi: 10.1016/j.apm.2005.03.020
    [29]
    Röske F. 1997. Sea level forecasts using neural networks. Deutsche Hydrografische Zeitschrift, 49(1): 71–99. doi: 10.1007/BF02765119
    [30]
    Seo Y, Kim S, Kisi O, et al. 2015. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. Journal of Hydrology, 520: 224–243. doi: 10.1016/j.jhydrol.2014.11.050
    [31]
    Shiri J, Makarynskyy O, Kisi O, et al. 2011. Prediction of short-term operational water levels using an adaptive neuro-fuzzy inference system. Journal of Waterway, Port, Coastal, and Ocean Engineering, 137(6): 344–354. doi: 10.1061/(ASCE)WW.1943-5460.0000097
    [32]
    Solgi A, Pourhaghi A, Bahmani R, et al. 2017. Improving SVR and ANFIS performance using wavelet transform and PCA algorithm for modeling and predicting biochemical oxygen demand (BOD). Ecohydrology & Hydrobiology, 17(2): 164–175
    [33]
    Tsai, C P, Lee T L. 2001. Back-propagation neural network in tidal-level forecasting. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125(4): 54–55
    [34]
    Veltcheva A, Guedes S C. 2015. Wavelet analysis of non-stationary sea waves during Hurricane Camille. Ocean Engineering, 95: 166–174. doi: 10.1016/j.oceaneng.2014.11.035
    [35]
    Vivekanandan N, Singh C B. 2003. Prediction of tides using hydrodynamic and neural network approaches. Indian Journal of Geo-Marine Sciences, 32(1): 25–30
    [36]
    Yadav B, Eliza K. 2017. A hybrid wavelet-support vector machine model for prediction of Lake water level fluctuations using hydro-meteorological data. Measurement, 103: 294–301. doi: 10.1016/j.measurement.2017.03.003
    [37]
    Yin Jianchuan, Li Lianbo, Cao Yuchi, et al. 2016. An adaptive online sequential extreme learning machine for real-time tidal level prediction. In: Cao J, Mao K, Wu J., et al, eds. Proceedings of ELM-2015 Volume 2. Cham: Springer International Publishing, 55-66
    [38]
    Yin Jianchuan, Wang Nini, Hu Jiangqiang. 2015. A hybrid real-time tidal prediction mechanism based on harmonic method and variable structure neural network. Engineering Applications of Artificial Intelligence, 41: 223–231. doi: 10.1016/j.engappai.2015.03.002
    [39]
    Zhang Zeguo, Yin Jianchuan, Wang Nini, et al. 2017. A precise tidal prediction mechanism based on the combination of harmonic analysis and adaptive network-based fuzzy inference system model. Acta Oceanologica Sinica, 36(11): 94–105. doi: 10.1007/s13131-017-1140-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (372) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return