Volume 39 Issue 3
Apr.  2020
Turn off MathJax
Article Contents
Baoxin Feng, Hailong Liu, Pengfei Lin. Effects of Kuroshio intrusion optimization on the simulation of mesoscale eddies in the northern South China Sea[J]. Acta Oceanologica Sinica, 2020, 39(3): 12-24. doi: 10.1007/s13131-020-1565-5
Citation: Baoxin Feng, Hailong Liu, Pengfei Lin. Effects of Kuroshio intrusion optimization on the simulation of mesoscale eddies in the northern South China Sea[J]. Acta Oceanologica Sinica, 2020, 39(3): 12-24. doi: 10.1007/s13131-020-1565-5

Effects of Kuroshio intrusion optimization on the simulation of mesoscale eddies in the northern South China Sea

doi: 10.1007/s13131-020-1565-5
Funds:  The National Key R&D Program for Developing Basic Sciences under contract Nos 2016YFC1401401 and 2016YFC1401601; the National Natural Science Foundation of China under contract Nos 41576025, 41576026 and 41776030.
More Information
  • The impacts of Kuroshio intrusion (KI) optimization on the simulation of meso-scale eddies (MEs) in the northern South China Sea (SCS) were investigated based on an eddy-resolving ocean general circulation model by comparing two numerical experiments with differences in their form and intensity of KI due to the optimizing topography at Luzon Strait (LS). We found that a reduced KI reduces ME activities in the northern SCS, which is similar to the observations. In this case, the biases of the model related to simulating the eddy kinetic energy (EKE) west of the LS and along the northern slope are remarkably attenuated. The reduced EKE modeling bias is associated with both the reduced number of anti-cyclonic eddies (AEs) and the reduced amplitude of cyclonic eddies (CEs). The EKE budget analysis further suggests that the optimization of the KI will change the EKE by changing the horizontal velocity shear and the slope of the thermocline, which are related to barotropic and baroclinic instabilities, respectively. The former plays the key role in regulating the EKE in the northern SCS due to the changing of the KI. The EKE advection caused by the KI is also important for the EKE budget to the west of the LS.
  • loading
  • [1]
    Chaigneau A, Eldin G, Dewitte B. 2009. Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007). Progress in Oceanography, 83(1–4): 117–123
    [2]
    Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    [3]
    Chen Gengxin, Hou Yijun, Chu Xiaoqing. 2011. Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research: Oceans, 116(C6): C06018
    [4]
    Chen Gengxin, Gan Jianping, Xie Qiang, et al. 2012. Eddy heat and salt transports in the South China Sea and their seasonal modulation. Journal of Geophysical Research: Oceans, 117(C5): C05021. doi: 10.1029/2011JC007724
    [5]
    Chen Ru, Flierl G R, Wunsch C. 2014. A description of local and nonlocal eddy-mean flow interaction in a global eddy-permitting state estimate. Journal of Physical Oceanography, 44(9): 2336–2352. doi: 10.1175/JPO-D-14-0009.1
    [6]
    Chen Gengxin, Wang Dongxiao, Dong Changming, et al. 2015. Observed deep energetic eddies by seamount wake. Scientific Reports, 5: 17416. doi: 10.1038/srep17416
    [7]
    Chu Xiaoqiang, Dong Changming, Qi Yiquan. 2017. The influence of ENSO on an oceanic eddy pair in the South China Sea. Journal of Geophysical Research: Oceans, 122(3): 1643–1652. doi: 10.1002/2016JC012642
    [8]
    Chu P C, Fan Chenwu, Lozano C J, et al. 1998. An airborne expendable bathythermograph survey of the South China Sea, May 1995. Journal of Geophysical Research: Oceans, 103(C10): 21637–21652. doi: 10.1029/98JC02096
    [9]
    Ducet N, Le Traon P Y, Reverdin G. 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. Journal of Geophysical Research: Oceans, 105(C8): 19477–19498. doi: 10.1029/2000JC900063
    [10]
    Feng Baoxin, Liu Hailong, Lin Pengfei, et al. 2017. Meso-scale eddy in the South China Sea simulated by an eddy-resolving ocean model. Acta Oceanologica Sinica, 36(5): 9–25. doi: 10.1007/s13131-017-1058-3
    [11]
    Gent P R, McWilliams J C. 1990. Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20(1): 150–155. doi: 10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
    [12]
    He Yinghui, Cai Shuqun, Wang Dongxiao, et al. 2015. A model study of Luzon cold eddies in the northern South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 97: 107–123. doi: 10.1016/j.dsr.2014.12.007
    [13]
    Huang Zhida, Liu Hailong, Lin Pengfei, et al. 2017. Influence of island chains on the Kuroshio intrusion in the Luzon Strait. Advances in Atmospheric Sciences, 34(3): 397–410. doi: 10.1007/s00376-016-6159-y
    [14]
    Isern-Fontanet J, García-Ladona E, Font J. 2003. Identification of marine eddies from altimetric maps. Journal of Atmospheric and Oceanic Technology, 20(5): 772–778. doi: 10.1175/1520-0426(2003)20<772:IOMEFA>2.0.CO;2
    [15]
    Isern-Fontanet J, García-Ladona E, Font J. 2006. Vortices of the Mediterranean Sea: an altimetric perspective. Journal of Physical Oceanography, 36(1): 87–103. doi: 10.1175/JPO2826.1
    [16]
    Jia Yinglai, Liu Qinyu. 2004. Eddy shedding from the Kuroshio bend at Luzon Strait. Journal of Oceanography, 60(6): 1063–1069. doi: 10.1007/s10872-005-0014-6
    [17]
    Jia Yinglai, Chassignet E P. 2011. Seasonal variation of eddy shedding from the Kuroshio intrusion in the Luzon strait. Journal of Oceanography, 67(5): 601–611. doi: 10.1007/s10872-011-0060-1
    [18]
    Large W G, Yeager S G. 2004. Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Technical Note NCAR/TN-460+STR, National Center for Atmospheric Research, Boulder, Colorado
    [19]
    Li Li, Nowlin W D Jr, Su Jilan. 1998. Anticyclonic rings from the Kuroshio in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 45(9): 1469–1482. doi: 10.1016/S0967-0637(98)00026-0
    [20]
    Lin Pengfei, Wang Fan, Chen Yongli, et al. 2007. Temporal and spatial variation characteristics on eddies in the South China Sea I. statistical analyses. Haiyang Xuebao (in Chinese), 29(3): 14–22
    [21]
    Lin Xiayan, Dong Changming, Chen Dake, et al. 2015. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep Sea Research Part I: Oceanographic Research Papers, 99: 46–64. doi: 10.1016/j.dsr.2015.01.007
    [22]
    Liu Qinyu, Kaneko A, Su Jilan. 2008. Recent progress in studies of the South China Sea circulation. Journal of Oceanography, 64(5): 753–762. doi: 10.1007/s10872-008-0063-8
    [23]
    Liu Hailong, Lin Pengfei, Yu Yongqiang, et al. 2012. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorologica Sinica, 26(3): 318–329. doi: 10.1007/s13351-012-0305-y
    [24]
    Metzger E J, Hurlburt H E. 2001. The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea. Journal of Physical Oceanography, 31(7): 1712–1732. doi: 10.1175/1520-0485(2001)031<1712:TNNOKP>2.0.CO;2
    [25]
    Nan Feng, Xue Huijie, Xiu Peng, et al. 2011. Oceanic eddy formation and propagation southwest of Taiwan. Journal of Geophysical Research: Oceans, 116(C12): C12045. doi: 10.1029/2011JC007386
    [26]
    Pullen J, Doyle J D, May P, et al. 2008. Monsoon surges trigger oceanic eddy formation and propagation in the lee of the Philippine islands. Geophysical Research Letters, 35(7): L07604
    [27]
    Qu Tangdong. 2000. Upper-layer circulation in the South China Sea. Journal of Physical Oceanography, 30(6): 1450–1460. doi: 10.1175/1520-0485(2000)030<1450:ULCITS>2.0.CO;2
    [28]
    Roeske F. 2001. An atlas of surface flues based on the ECMWF re-analysis: A climatological dataset to force global ocean general circulation models. Report No. 323. Hamburg: Max-Planck-Institut fur Meteorologies , 31
    [29]
    Su Jilan, Xu Jianping, Cai Shuqun, et al. 1999. Gyres and Eddies in the South China Sea. Onset and Evolution of the South China Sea Monsoon and its Interaction with the Ocean (in Chinese). Beijing: Beijing Meteorological Press, 272–279
    [30]
    Sun Zhongbin, Zhang Zhiwei, Zhao Wei, et al. 2016. Interannual modulation of eddy kinetic energy in the northeastern South China Sea as revealed by an eddy-resolving OGCM. Journal of Geophysical Research: Oceans, 121(5): 3190–3201. doi: 10.1002/2015JC011497
    [31]
    Wang Liping, Koblinsky C J, Howden S. 2000. Mesoscale variability in the South China Sea from the Topex/Poseidon altimetry data. Deep Sea Research Part I: Oceanographic Research Papers, 47(4): 681–708. doi: 10.1016/S0967-0637(99)00068-0
    [32]
    Wang Guihua, Su Jilan, Chu P C. 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters, 30(21): 2121. doi: 10.1029/2003GL018532
    [33]
    Wang Chunzai, Wang Weiqiang, Wang Dongxiao, et al. 2006. Interannual variability of the South China Sea associated with El Niño. Journal of Geophysical Research: Oceans, 111(C3): C03023
    [34]
    Wang Guihua, Chen Dake, Su Jilan. 2008. Winter eddy genesis in the eastern South China Sea due to orographic wind jets. Journal of Physical Oceanography, 38(3): 726–732. doi: 10.1175/2007JPO3868.1
    [35]
    Wang Qiang, Zeng Lili, Zhou Weidong, et al. 2015. Mesoscale eddies cases study at Xisha waters in the South China Sea in 2009/2010. Journal of Geophysical Research: Oceans, 120(1): 517–532. doi: 10.1002/2014JC009814
    [36]
    Xiu Peng, Chai Fei, Shi Lei, et al. 2010. A census of eddy activities in the South China Sea During 1993–2007. Journal of Geophysical Research: Oceans, 115(C3): C03012
    [37]
    Yang Haiyuan, Wu Linxin, Liu Hailong, et al. 2013. Eddy energy sources and sinks in the South China Sea. Journal of Geophysical Research: Oceans, 118(9): 4716–4726. doi: 10.1002/jgrc.20343
    [38]
    Yu Yongqiang, Liu Hailong, Lin Pengfei. 2012. A quasi-global 1/10° eddy-resolving ocean general circulation model and its preliminary results. Chinese Science Bulletin, 57(30): 3908–3916. doi: 10.1007/s11434-012-5234-8
    [39]
    Yuan Dongliang, Han Weiqing, Hu Dunxin. 2006. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. Journal of Geophysical Research: Oceans, 111(C11): C11007. doi: 10.1029/2005JC003412
    [40]
    Zhang Zhiwei, Zhao Wei, Tian Jiwei, et al. 2013. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. Journal of Geophysical Research: Oceans, 118(12): 6479–6494. doi: 10.1002/2013JC008994
    [41]
    Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6: 24349. doi: 10.1038/srep24349
    [42]
    Zhang Zhiwei, Zhao Wei, Qiu Bo, et al. 2017. Anticyclonic eddy sheddings from Kuroshio Loop and the accompanying cyclonic eddy in the northeastern South China Sea. Journal of Physical Oceanography, 47(6): 1243–1259. doi: 10.1175/JPO-D-16-0185.1
    [43]
    Zhou Tianjun, Yu Yongqiang, Liu Yimin, et al. 2014. Flexible Global Ocean-Atmosphere-Land System Model. Berlin Heidelberg: Springer-Verlag
    [44]
    Zhuang Wei, Xie Shangping, Wang Dongxiao, et al. 2010. Intraseasonal Variability in Sea Surface Height Over the South China Sea. Journal of Geophysical Research: Oceans, 115(C4): C04010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views (680) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return