Citation: | Xinming Lei, Lei Jiang, Yuyang Zhang, Guowei Zhou, Jiansheng Lian, Hui Huang. Response of coralline algae Porolithon onkodes to elevated seawater temperature and reduced pH[J]. Acta Oceanologica Sinica, 2020, 39(2): 132-137. doi: 10.1007/s13131-020-1548-6 |
[1] |
Anthony K R N, Kline D I, Diaz-Pulido G, et al. 2008. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America, 105(45): 17442–17446. doi: 10.1073/pnas.0804478105
|
[2] |
Bach L L, Freer J J, Kamenos N A. 2017. In situ response of tropical coralline algae to a novel thermal regime. Frontiers in Marine Science, 4: 212. doi: 10.3389/fmars.2017.00212
|
[3] |
Blake C, Maggs C A. 2003. Comparative growth rates and internal banding periodicity of maerl species (Corallinales, Rhodophyta) from Northern Europe. Phycologia, 42(6): 606–612. doi: 10.2216/i0031-8884-42-6-606.1
|
[4] |
Bopp L, Resplandy L, Orr J C, et al. 2013. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10(10): 6225–6245. doi: 10.5194/bg-10-6225-2013
|
[5] |
Burdett H L, Keddie V, MacArthur N, et al. 2014. Dynamic photoinhibition exhibited by red coralline algae in the Red Sea. BMC Plant Biology, 14: 139. doi: 10.1186/1471-2229-14-139
|
[6] |
Chisholm J R M. 2003. Primary productivity of reef-building crustose coralline algae. Limnology and Oceanography, 48(4): 1376–1387. doi: 10.4319/lo.2003.48.4.1376
|
[7] |
Comeau S, Carpenter R C, Edmunds P J. 2014. Effects of irradiance on the response of the coral acropora pulchra and the calcifying alga hydrolithon reinboldii to temperature elevation and ocean acidification. Journal of Experimental Marine Biology and Ecology, 453: 28–35. doi: 10.1016/j.jembe.2013.12.013
|
[8] |
Davies P S. 1989. Short-term growth measurements of corals using an accurate buoyant weighing technique. Marine Biology, 101(3): 389–395. doi: 10.1007/BF00428135
|
[9] |
Diaz-Pulido G, Anthony K R N, Kline D I, et al. 2012. Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. Journal of Phycology, 48(1): 32–39. doi: 10.1111/j.1529-8817.2011.01084.x
|
[10] |
Egilsdottir H, Noisette F, Noël L M L J, et al. 2013. Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongata. Marine Biology, 160(8): 2103–2112. doi: 10.1007/s00227-012-2090-7
|
[11] |
Form A U, Riebesell U. 2012. Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral lophelia pertusa. Global Change Biology, 18(3): 843–853. doi: 10.1111/j.1365-2486.2011.02583.x
|
[12] |
Foster M S. 2001. Rhodoliths: Between rocks and soft places. Journal of Phycology, 37(5): 659–667. doi: 10.1046/j.1529-8817.2001.00195.x
|
[13] |
Gao Kunshan, Zheng Yangqiao. 2010. Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Global Change Biology, 16(8): 2388–2398
|
[14] |
Gattuso J P, Magnan A, Billé R, et al. 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science, 349(6243): aac4722. doi: 10.1126/science.aac4722
|
[15] |
Glynn P W. 1996. Coral reef bleaching: Facts, hypotheses and implications. Global Change Biology, 2(6): 495–509. doi: 10.1111/j.1365-2486.1996.tb00063.x
|
[16] |
Heyward A J, Negri A P. 1999. Natural inducers for coral larval metamorphosis. Coral Reefs, 18(3): 273–279. doi: 10.1007/s003380050193
|
[17] |
Hoegh-Guldberg O, Mumby P J, Hooten A J, et al. 2007. Coral reefs under rapid climate change and ocean acidification. Science, 318(5857): 1737–1742. doi: 10.1126/science.1152509
|
[18] |
Hofmann G E, Barry J P, Edmunds P J, et al. 2010. The effect of ocean acidification on calcifying organisms in marine ecosystems: An organism-to-ecosystem perspective. Annual Review of Ecology, Evolution, and Systematics, 41(1): 127–147. doi: 10.1146/annurev.ecolsys.110308.120227
|
[19] |
Hofmann L C, Yildiz G, Hanelt D, et al. 2012. Physiological responses of the calcifying rhodophyte, Corallina officinalis (L.), to future CO2 levels. Marine Biology, 159(4): 783–792. doi: 10.1007/s00227-011-1854-9
|
[20] |
Jiang Lei, Zhang Fang, Guo Minglan, et al. 2018. Increased temperature mitigates the effects of ocean acidification on the calcification of juvenile pocillopora damicornis, but at a cost. Coral Reefs, 37(1): 71–79. doi: 10.1007/s00338-017-1634-1
|
[21] |
Johnson M D, Carpenter R C. 2012. Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to grazing. Journal of Experimental Marine Biology and Ecology, 434–435: 94–101. doi: 10.1016/j.jembe.2012.08.005
|
[22] |
Kim K, Portis A R Jr. 2004. Oxygen-dependent H2O2 production by Rubisco. FEBS Letters, 571(1–3): 124–128. doi: 10.1016/j.febslet.2004.06.064
|
[23] |
Kroeker K J, Kordas R L, Crim R, et al. 2013. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Global Change Biology, 19(6): 1884–1896. doi: 10.1111/gcb.12179
|
[24] |
Legrand E, Riera P, Lutier M, et al. 2017. Species interactions can shift the response of a maerl bed community to ocean acidification and warming. Biogeosciences, 14: 5359–5376. doi: 10.5194/bg-14-5359-2017
|
[25] |
Lei Xinming, Huang Hui, Lian Jiansheng, et al. 2018. Community structure of coralline algae and its relationship with environment in Sanya reefs, China. Aquatic Ecosystem Health & Management, 21(1): 19–29
|
[26] |
Li Xiubao, Liu Sheng, Huang Hui, et al. 2012. Coral bleaching caused by an abnormal water temperature rise at Luhuitou fringing reef, Sanya Bay, China. Aquatic Ecosystem Health & Management, 15(2): 227–233
|
[27] |
Littler M M. 1973. The productivity of Hawaiian fringing-reef crustose corallinaceae and an experimental evaluation of production methodology. Limnology and Oceanography, 18(6): 946–952. doi: 10.4319/lo.1973.18.6.0946
|
[28] |
Martin S, Cohu S, Vignot C, et al. 2013. One-year experiment on the physiological response of the mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecology and Evolution, 3(3): 676–693. doi: 10.1002/ece3.475
|
[29] |
Martin S, Gattuso J P. 2009. Response of mediterranean coralline algae to ocean acidification and elevated temperature. Global Change Biology, 15(8): 2089–2100. doi: 10.1111/j.1365-2486.2009.01874.x
|
[30] |
Martin S, Hall-Spencer J M. 2017. Effects of ocean warming and acidification on Rhodolith/Maërl beds. In: Riosmena-Rodríguez R, Nelson W, Aguirre J, eds. Rhodolith/Maërl Beds: A Global Perspective. Cham: Springer, 55–85
|
[31] |
McCoy S J, Kamenos N A. 2015. Coralline algae (Rhodophyta) in a changing world: Integrating ecological, physiological, and geochemical responses to global change. Journal of Phycology, 51(1): 6–24. doi: 10.1111/jpy.12262
|
[32] |
Moenne A, González A, Sáez C A. 2016. Mechanisms of metal tolerance in marine macroalgae, with emphasis on copper tolerance in Chlorophyta and Rhodophyta. Aquatic Toxicology, 176: 30–37. doi: 10.1016/j.aquatox.2016.04.015
|
[33] |
Morse J W, Andersson A J, Mackenzie F T. 2006. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “Ocean Acidification”: Role of high Mg-Calcites. Geochimica et Cosmochimica Acta, 70(23): 5814–5830. doi: 10.1016/j.gca.2006.08.017
|
[34] |
Müller R, Desel C, Steinhoff F S, et al. 2012. UV-radiation and elevated temperatures induce formation of reactive oxygen species in gametophytes of cold-temperate/Arctic kelps (Laminariales, Phaeophyceae). Phycological Research, 60(1): 27–36. doi: 10.1111/j.1440-1835.2011.00630.x
|
[35] |
Muñoz P T, Sáez C A, Martínez-Callejas M B, et al. 2018. Short-term interactive effects of increased temperatures and acidification on the calcifying macroalgae Lithothamnion crispatum and Sonderophycus capensis. Aquatic Botany, 148: 46–52. doi: 10.1016/j.aquabot.2018.04.008
|
[36] |
Nash M C, Martin S, Gattuso J P. 2016. Mineralogical response of the mediterranean crustose coralline alga Lithophyllum cabiochae to near-future ocean acidification and warming. Biogeosciences, 13(21): 5937–5945. doi: 10.5194/bg-13-5937-2016
|
[37] |
Nash M C, Uthicke S, Negri A P, et al. 2015. Ocean acidification does not affect magnesium composition or dolomite formation in living crustose coralline algae, Porolithon onkodes in an experimental system. Biogeosciences, 12(17): 5247–5260. doi: 10.5194/bg-12-5247-2015
|
[38] |
Nelson W A. 2009. Calcified macroalgae-Critical to coastal ecosystems and vulnerable to change: A review. Marine and Freshwater Research, 60(8): 787–801. doi: 10.1071/MF08335
|
[39] |
Noisette F, Egilsdottir H, Davoult D, et al. 2013. Physiological responses of three temperate coralline algae from contrasting habitats to near-future ocean acidification. Journal of Experimental Marine Biology and Ecology, 448: 179–187. doi: 10.1016/j.jembe.2013.07.006
|
[40] |
Perry C T, Hepbum L J. 2008. Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: taphonomic signatures of reef accretion and reef depositional events. Earth-Science Reviews, 86(1–4): 106–144. doi: 10.1016/j.earscirev.2007.08.006
|
[41] |
Pospíšil P. 2016. Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Frontiers in Plant Science, 7: 1950
|
[42] |
Quinn G P, Keough M J. 2002. Experimental Design and Data Analysis for Biologists. New York: Cambridge University Press
|
[43] |
Ragazzola F, Foster L C, Form A, et al. 2012. Ocean acidification weakens the structural integrity of coralline algae. Global Change Biology, 18(9): 2804–2812. doi: 10.1111/j.1365-2486.2012.02756.x
|
[44] |
Riebesell U, Zondervan I, Rost B, et al. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407(6802): 364–367. doi: 10.1038/35030078
|
[45] |
Scherner F, Pereira C M, Duarte G, et al. 2016. Effects of ocean acidification and temperature increases on the photosynthesis of tropical reef calcified macroalgae. PLoS One, 11(5): e0154844. doi: 10.1371/journal.pone.0154844
|
[46] |
Semesi I S, Kangwe J, Björk M. 2009. Alterations in seawater pH and CO2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta). Estuarine, Coastal and Shelf Science, 84(3): 337–341. doi: 10.1016/j.ecss.2009.03.038
|
[47] |
Steller D L, Riosmena-Rodríguez R, Foster M S, et al. 2003. Rhodolith bed diversity in the Gulf of California: The importance of rhodolith structure and consequences of disturbance. Aquatic Conservation: Marine and Freshwater Ecosystems, 13(S1): S5–S20. doi: 10.1002/aqc.564
|
[48] |
Vásquez-Elizondo R M, Enríquez S. 2016. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Scientific Reports, 6: 19030. doi: 10.1038/srep19030
|
[49] |
Zhang Chenglong, Huang Hui, Ye Cheng, et al. 2013. Diurnal and seasonal variations of carbonate system parameters on Luhuitou fringing reef, Sanya Bay, Hainan Island, South China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 96: 65–74. doi: 10.1016/j.dsr2.2013.02.013
|