Citation: | Mingliang Zhang, Yongpeng Ji, Yini Wang, Hongxing Zhang, Tianping Xu. Numerical investigation on tsunami wave mitigation on forest sloping beach[J]. Acta Oceanologica Sinica, 2020, 39(1): 130-140. doi: 10.1007/s13131-019-1527-y |
[1] |
Blackmar P J, Cox D T, Wu Weicheng. 2014. Laboratory observations and numerical simulations of wave height attenuation in heterogeneous vegetation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 140(1): 56–65. doi: 10.1061/(ASCE)WW.1943-5460.0000215
|
[2] |
Iimura K, Tanaka N. 2012. Numerical simulation estimating effects of tree density distribution in coastal forest on tsunami mitigation. Ocean Engineering, 54: 223–232. doi: 10.1016/j.oceaneng.2012.07.025
|
[3] |
Kanayama H, Dan H. 2013. A tsunami simulation of Hakata Bay using the viscous shallow-water equations. Japan Journal of Industrial and Applied Mathematics, 30(3): 605–624. doi: 10.1007/s13160-013-0111-7
|
[4] |
Kathiresan K, Rajendran N. 2005. Coastal mangrove forests mitigated tsunami. Estuarine, Coastal and Shelf Science, 65(3): 601–606. doi: 10.1016/j.ecss.2005.06.022
|
[5] |
Kazolea M, Delis A I. 2013. A well-balanced shock-capturing hybrid finite volume-finite difference numerical scheme for extended 1D Boussinesq models. Applied Numerical Mathematics, 67: 167–186. doi: 10.1016/j.apnum.2011.07.003
|
[6] |
Kuiry S N, Wu Weiming, Ding Yan. 2012. A one-dimensional shock-capturing model for long wave run-up on sloping beaches. Journal of Hydraulic Engineering, 18(2): 65–79. doi: 10.1080/09715010.2012.662429
|
[7] |
Li Ying, Raichlen F. 2002. Non-breaking and breaking solitary wave run-up. Journal of Fluid Mechanics, 456: 295–318. doi: 10.1017/S0022112001007625
|
[8] |
Liang Qiuhua, Hou Jingming, Amouzgar R. 2015. Simulation of tsunami propagation using adaptive cartesian grids. Coastal Engineering Journal, 57(4): 1550016–1
|
[9] |
Liu Yingchun, Shi Yaolin, Yuen D A, et al. 2009. Comparison of linear and nonlinear shallow wave water equations applied to tsunami waves over the China Sea. Acta Geotechnica, 4(2): 129–137. doi: 10.1007/s11440-008-0073-0
|
[10] |
Lotto G C, Dunham E M. 2015. High-order finite difference modeling of tsunami generation in a compressible ocean from offshore earthquakes. Computational Geosciences, 19(2): 327–340. doi: 10.1007/s10596-015-9472-0
|
[11] |
Maleki F S, Khan A A. 2016. 1-D coupled non-equilibrium sediment transport modeling for unsteady flows in the discontinuous Galerkin framework. Journal of Hydrodynamics, 28(4): 534–543. doi: 10.1016/S1001-6058(16)60658-3
|
[12] |
Synolakis C E. 1986. The runup of long waves[dissertation]. Pasadena, CA: California Institute of Technology
|
[13] |
Takase S, Moriguchi S, Terada K, et al. 2016. 2D-3D hybrid stabilized finite element method for tsunami runup Simulations. Computational Mechanics, 58(3): 411–422. doi: 10.1007/s00466-016-1300-4
|
[14] |
Tanaka N. 2009. Vegetation bioshields for tsunami mitigation: review of effectiveness, limitations, construction, and sustainable management. Landscape and Ecological Engineering, 5(1): 71–79. doi: 10.1007/s11355-008-0058-z
|
[15] |
Tang Jun, Causon D, Mingham C, et al. 2013. Numerical study of vegetation damping effects on solitary wave run-up using the nonlinear shallow water equations. Coastal Engineering, 75: 21–28. doi: 10.1016/j.coastaleng.2013.01.002
|
[16] |
Tang Jun, Shen Yongming, Causon D M, et al. 2017. Numerical study of periodic long wave run-up on a rigid vegetation sloping beach. Coastal Engineering, 121: 158–166. doi: 10.1016/j.coastaleng.2016.12.004
|
[17] |
Thuy N B, Nandasena N A K, Dang V H, et al. 2018. Simplified formulae for designing coastal forest against tsunami run-up: one-dimensional approach. Natural Hazards, 92(1): 327–346. doi: 10.1007/s11069-018-3197-z
|
[18] |
Thuy N B, Tanaka N, Tanimoto K. 2012. Tsunami mitigation by coastal vegetation considering the effect of tree breaking. Journal of Coastal Conservation, 16(1): 111–121. doi: 10.1007/s11852-011-0179-7
|
[19] |
Thuy N B, Tanimoto K, Tanaka N. 2010. Flow and potential force due to runup tsunami around a coastal forest with a gap-experiments and numerical simulations. Science of Tsunami Hazards, 29(2): 43–69
|
[20] |
Touhami H E, Khellaf M C. 2017. Laboratory study on effects of submerged obstacles on tsunami wave and run-up. Natural Hazards, 87(2): 757–771. doi: 10.1007/s11069-017-2791-9
|
[21] |
Ulvrová M, Paris R, Kelfoun K, et al. 2014. Numerical simulations of tsunamis generated by underwater volcanic explosions at Karymskoye lake (Kamchatka, Russia) and Kolumbo volcano (Aegean Sea, Greece). Natural Hazards and Earth System Sciences, 14(2): 401–412. doi: 10.5194/nhess-14-401-2014
|
[22] |
Vater S, Beisiegel N, Behrens J. 2015. A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: one-dimensional case. Advances in Water Resources, 85: 1–13. doi: 10.1016/j.advwatres.2015.08.008
|
[23] |
Vreugdenhil C B. 1994. Numerical Methods for Shallow-water Flow. Dordrecht: Springer
|
[24] |
Wu Guoxiang, Shi Fengyan, Kirby J T, et al. 2016. A pre-storage, subgrid model for simulating flooding and draining processes in salt marshes. Coastal Engineering, 108: 65–78. doi: 10.1016/j.coastaleng.2015.11.008
|
[25] |
Yao Yu, Tang Zhengjiang, Jiang Changbo, et al. 2018. Boussinesq modeling of solitary wave run-up reduction by emergent vegetation on a sloping beach. Journal of Hydro-environment Research, 19: 78–87. doi: 10.1016/j.jher.2018.03.001
|
[26] |
Zhang Mingliang, Hao Zining, Zhang Yunpeng, et al. 2013. Numerical simulation of solitary and random wave propagation through vegetation based on VOF method. Acta Oceanologica Sinica, 32(7): 38–46. doi: 10.1007/s13131-013-0330-4
|