Lingling Jiang, Xiangyu Guo, Lin Wang, Shubha Sathyendranath, Hayley Evers-King, Yanlong Chen, Bingnan Li. Validation of MODIS ocean-colour products in the coastal waters of the Yellow Sea and East China Sea[J]. Acta Oceanologica Sinica, 2020, 39(1): 91-101. doi: 10.1007/s13131-019-1522-3
Citation: Lingling Jiang, Xiangyu Guo, Lin Wang, Shubha Sathyendranath, Hayley Evers-King, Yanlong Chen, Bingnan Li. Validation of MODIS ocean-colour products in the coastal waters of the Yellow Sea and East China Sea[J]. Acta Oceanologica Sinica, 2020, 39(1): 91-101. doi: 10.1007/s13131-019-1522-3

Validation of MODIS ocean-colour products in the coastal waters of the Yellow Sea and East China Sea

doi: 10.1007/s13131-019-1522-3
Funds:  The National Natural Science Foundation of China under contract Nos 41506197 and 41406199; the Doctoral Scientific Research Foundation of Liaoning Province under contract No. 201501190; the Fundamental Research Funds for the Central Universities under contract No. 3132017110.
More Information
  • Corresponding author: E-mail: jiangll@dlmu.edu.cn
  • Received Date: 2018-12-29
  • Accepted Date: 2019-05-05
  • Available Online: 2020-04-21
  • Publish Date: 2020-01-20
  • An extensive study collected in situ data along the Yellow Sea (YS) and East China Sea (ECS) to assess the radiometric properties and the concentration of the water constituents derived from Moderate Resolution Imaging Spectroradiometer (MODIS). Thirteen high quality match-ups were obtained for evaluating the MODIS estimates of Rrs(λ), chlorophyll a (Chl a) and concentrations of suspended particulate sediment matter (SPM). For MODIS Rrs(λ), the mean absolute percentage difference (APD) was in the range of 20%–36%, and the highest uncertainty appeared at 412 nm, whereas the band ratio of Rrs(λ) at 488 nm compared with that at 547 nm was highly consistent, with an APD of 7%. A combination of near-infrared bands and shortwave infrared wavelengths atmosphere correction algorithm (NIR-SWIR algorithm) was applied to the MODIS data, and the estimation accuracy of Rrs were improved at most of the visible spectral bands except 645 nm, 667 nm and 678 nm. Two ocean-colour empirical algorithms for Chl a estimation were applied to the processed data, the results indicated that the accuracy of the derived Chl a values was obviously improved, the four-band algorithms outperformed the other algorithm for measured and simulated datasets, and the minimum APD was 35%. The SPM was also quantified. Two regional and two coastal SPM algorithms were modified according to the in situ data. By comparison, the modified Tassan model had a higher accuracy for the application along the YS and ECS with an APD of 21%. However, given the limited match-up dataset and the potential influence of the aerosol properties on atmosphere correction, further research is required to develop additional algorithms especially for the low Chl a coastal water.
  • loading
  • [1]
    Bailey W S, Werdell J P. 2006. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sensing of Environment, 102: 12–23. doi: 10.1016/j.rse.2006.01.015
    [2]
    Bailey S W, Franz B A, Werdell P J. 2010. Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. Optics Express, 18(7): 7521–7527. doi: 10.1364/OE.18.007521
    [3]
    Bian Changwei, Jiang Wensheng, Quan Qi, et al. 2013. Distributions of suspended sediment concentration in the Yellow Sea and the East China Sea based on field surveys during the four seasons of 2011. Journal of Marine Systems, 121–122(5): 24–35
    [4]
    Carder K L, Chen F R, Cannizzaro J P, et al. 2004. Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a. Advances in Space Research, 33(7): 1152–1159. doi: 10.1016/S0273-1177(03)00365-X
    [5]
    Carswell T, Costa M, Young E, et al. 2017. Evaluation of MODIS-aqua atmospheric correction and chlorophyll products of western North American coastal waters based on 13 years of data. Remote Sensing, 9(10): 63–88
    [6]
    Chen Shuguo, Zhang Tinglu, Hu Lianbo. 2015. Evaluation of the NIR-SWIR atmospheric correction algorithm for MODIS-Aqua over the Eastern China Seas. International Journal of Remote Sensing, 35(11–12): 4239–4251
    [7]
    Cheng Chunmei, Wei Yuchun, Xu Jianjun, et al. 2013. Remote sensing estimation of Chlorophyll a and suspended sediment concentration in turbid water based on spectral separation. Optik, 124(24): 6815–6819. doi: 10.1016/j.ijleo.2013.05.078
    [8]
    Cui Tingwei, Zhang Jie, Groom S, et al. 2010. Validation of MERIS ocean-color products in the Bohai Sea: A case study for turbid coastal waters. Remote Sensing of Environment, 114(10): 2326–2336. doi: 10.1016/j.rse.2010.05.009
    [9]
    Cui Tingwei, Zhang Jie, Tang Junwu, et al. 2014. Assessment of satellite ocean color products of MERIS, MODIS and SeaWiFS along the East China Coast (in the Yellow Sea and East China Sea). ISPRS Journal of Photogrammetry and Remote Sensing, 87: 137–151. doi: 10.1016/j.isprsjprs.2013.10.013
    [10]
    Dall’Olmo G, Gitelson A, Rundquist D C, et al. 2005. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sensing of Environment, 96(2): 176–187. doi: 10.1016/j.rse.2005.02.007
    [11]
    Dall’Olmo G, Gitelson A. 2006. Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: Modeling results. Applied Optics, 45(15): 3577–3592. doi: 10.1364/AO.45.003577
    [12]
    Darecki M, Stramski D. 2004. An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sensing of Environment, 89(3): 326–350. doi: 10.1016/j.rse.2003.10.012
    [13]
    Doxaran D, Cherukuru N, Lavender S J. 2006. Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling. Applied Optics, 45(10): 2310–2324. doi: 10.1364/AO.45.002310
    [14]
    D’Sa E J, Miller R L, McKee B A. 2007. Suspended particulate matter dynamics in coastal waters from ocean color: application to the northern Gulf of Mexico. Geophysical Research Letters, 34(23): L23611
    [15]
    Gao Xuelu, Song Jinming. 2005. Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary, China. Marine Pollution Bulletin, 50(3): 327–335. doi: 10.1016/j.marpolbul.2004.11.004
    [16]
    Gilerson A A, Gitelson A A, Zhou Jing, et al. 2010. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Optics Express, 18(23): 24109–24125. doi: 10.1364/OE.18.024109
    [17]
    Gitelson A A, Dall’Olmo G, Moses W, et al. 2008. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sensing of Environment, 112(9): 3582–3593. doi: 10.1016/j.rse.2008.04.015
    [18]
    Gitelson A, Schalles J F, Hladik C M. 2007. Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sensing of Environment, 109(4): 464–472. doi: 10.1016/j.rse.2007.01.016
    [19]
    Gons H J, Rijkeboer M, Ruddick K G. 2002. A chlorophyll-retrieval algorithm for satellite imagery (medium resolution imaging spectrometer) of inland and coastal waters. Journal of Plankton Research, 24(9): 947–951. doi: 10.1093/plankt/24.9.947
    [20]
    Gons H J, Rijkeboer M, Ruddick K G. 2005. Effect of a waveband shift on chlorophyll retrieval from MERIS imagery of inland and coastal waters. Journal of Plankton Research, 27(1): 125–127
    [21]
    Han L, Rundquist D C, Liu L L, et al. 1994. The spectral responses of algal chlorophyll in water with varying levels of suspended sediment. International Journal of Remote Sensing, 15(18): 3707–3718. doi: 10.1080/01431169408954353
    [22]
    He Qianshan, Li Chengcai, Tang Xu, et al. 2010. Validation of MODIS derived aerosol optical depth over the Yangtze River Delta in China. Remote Sensing of Environment, 114(8): 1649–1661. doi: 10.1016/j.rse.2010.02.015
    [23]
    Kang Na, Kumar K R, Yu Xingna, et al. 2016. Column-integrated aerosol optical properties and direct radiative forcing over the urban-industrial megacity Nanjing in the Yangtze River Delta, China. Environmental Science and Pollution Research, 23(17): 17532–17552. doi: 10.1007/s11356-016-6953-1
    [24]
    Knaeps E, Dogliotti A I, Raymaekers D, et al. 2012. In situ evidence of non-zero reflectance in the OLCI 1020 nm band for a turbid estuary. Remote Sensing of Environment, 120: 133–144. doi: 10.1016/j.rse.2011.07.025
    [25]
    Kuchinke C P, Gordon H R, Harding L W Jr, et al. 2009. Spectral optimization for constituent retrieval in Case 2 waters II: validation study in the Chesapeake Bay. Remote Sensing of Environment, 113(3): 610–621. doi: 10.1016/j.rse.2008.11.002
    [26]
    Lee Z, Carder K L, Steward R G, et al. 1996. Protocols for measurement of remote sensing reflectance from clear to turbid waters. Presented at SeaWiFS Workshop. Halifax
    [27]
    Li Shuangzhao, Yuan Dekui, Wang Xue. 2017. Improvement of SWIR atmospheric correction algorithm for case II water. Acta Scientiae Circumstantiae (in Chinese), 37(1): 104–111
    [28]
    Menon H B, Lotliker A A, Moorthy K K, et al. 2006. Variability of remote sensing reflectance and implications for optical remote sensing—a study along the eastern and northeastern waters of Arabian Sea. Geophysical Research Letters, 33(15): L15602. doi: 10.1029/2006GL026026
    [29]
    Mobley C D. 1999. Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics, 38(36): 7442–7455. doi: 10.1364/AO.38.007442
    [30]
    Moses W J, Gitelson A A, Berdnikov S, et al. 2009. Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data-successes and challenges. Environmental Research Letters, 4(4): 045005. doi: 10.1088/1748-9326/4/4/045005
    [31]
    Mueller J L, Fargion G S, McClain C R. 2003. Ocean optics protocols for Satellite Ocean color sensor validation, revision 4, volume VI: Special topics in ocean optics protocols and appendices. Greenbelt, Maryland: Aeronautics and Space Administration of USA
    [32]
    Prasad A K, Singh R P. 2007. Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000–2005). Remote Sensing of Environment, 107(1–2): 109–119. doi: 10.1016/j.rse.2006.09.026
    [33]
    Salem S I, Higa H, Kim H, et al. 2017. Assessment of Chlorophyll-a algorithms considering different trophic statuses and optimal bands. Sensors, 17(8): 1746. doi: 10.3390/s17081746
    [34]
    Shen Fang, Zhou Yunxuan, Li Daoji, et al. 2010. Medium resolution imaging spectrometer (MERIS) estimation of chlorophyll-a concentration in the turbid sediment-laden waters of the Changjiang (Yangtze) Estuary. International Journal of Remote Sensing, 31(17–18): 4635–4650. doi: 10.1080/01431161.2010.485216
    [35]
    Shi Wei, Wang Menghua. 2014. Ocean reflectance spectra at the red, near-infrared, and shortwave infrared from highly turbid waters: A study in the Bohai Sea, Yellow Sea, and East China Sea. Limnology and Oceanography, 59(2): 427–444. doi: 10.4319/lo.2014.59.2.0427
    [36]
    Sun Ling, Guo Maohua, Wang Xiaomei. 2010. Ocean color products retrieval and validation around China coast with MODIS. Acta Oceanologica Sinica, 29(4): 21–27. doi: 10.1007/s13131-010-0047-6
    [37]
    Tang Junwu, Tian Guoliang, Wang Xiaoyong, et al. 2004. The methods of water spectra measurement and analysis I: Above-water method. Journal of Remote Sensing (in Chinese), 8(1): 37–44
    [38]
    Tassan S. 1993. An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters. International Journal of Remote Sensing, 14(6): 1221–1229. doi: 10.1080/01431169308904406
    [39]
    Tilstone G H, Lotliker A A, Miller P I, et al. 2013. Assessment of MODIS-Aqua chlorophyll-a algorithms in coastal and shelf waters of the eastern Arabian Sea. Continental Shelf Research, 65: 14–26. doi: 10.1016/j.csr.2013.06.003
    [40]
    Vanhellemont Q, Ruddick K G. 2015. Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8. Remote Sensing of Environment, 161: 89–106. doi: 10.1016/j.rse.2015.02.007
    [41]
    Wang Menghua, Shi Wei. 2007. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Optics Express, 15(24): 15722–15733. doi: 10.1364/OE.15.015722
    [42]
    Wang Menghua, Son S, Shi Wei. 2009. Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data. Remote Sensing of Environment, 113(3): 635–644. doi: 10.1016/j.rse.2008.11.005
    [43]
    Wang Menghua, Shi Wei. 2012. Sensor noise effects of the SWIR bands on MODIS-derived ocean color products. IEEE Transactions on Geoscience and Remote Sensing, 50(9): 3280–3292. doi: 10.1109/TGRS.2012.2183376
    [44]
    Wang Lin, Zhao Dongzhi, Yang Jianhong, et al. 2012. Retrieval of total suspended matter from MODIS 250 m imagery in the Bohai Sea of China. Journal of Oceanography, 68(5): 719–725. doi: 10.1007/s10872-012-0129-5
    [45]
    Wang Fujiang, Chen Ying, Meng Xi, et al. 2016. The contribution of anthropogenic sources to the aerosols over East China Sea. Atmospheric Environment, 127: 22–33. doi: 10.1016/j.atmosenv.2015.12.002
    [46]
    Werdell P J, Franz B A, Bailey S W. 2010. Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay. Remote Sensing of Environment, 114(10): 2238–2247. doi: 10.1016/j.rse.2010.04.027
    [47]
    Xiao Yanfang, Zhang Jie, Cui Tingwei, et al. 2018. A new merged dataset of global ocean chlorophyll a concentration with higher spatial and temporal coverage. Acta Oceanologica Sinica, 37(7): 118–130. doi: 10.1007/s13131-018-1249-6
    [48]
    Xiong Xiaoxiong, Sun Junqiang, Barnes W, et al. 2007. Multiyear on-orbit calibration and performance of Terra MODIS reflective solar bands. IEEE Transactions on Geoscience and Remote Sensing, 45(4): 879–889. doi: 10.1109/TGRS.2006.890567
    [49]
    Yacobi Y Z, Moses W J, Kaganovsky S, et al. 2011. NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study. Water Research, 45(7): 2428–2436. doi: 10.1016/j.watres.2011.02.002
    [50]
    Zhang Minwei, Tang Junwu, Dong Qing, et al. 2010. Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery. Remote Sensing of Environment, 114(2): 392–403. doi: 10.1016/j.rse.2009.09.016
    [51]
    Zibordi G, Berthon J F, Mélin F, et al. 2009. Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland. Remote Sensing of Environment, 113(12): 2574–2591. doi: 10.1016/j.rse.2009.07.013
    [52]
    Zibordi G, Mélin F, Berthon J F. 2006. Comparison of SeaWiFS, MODIS and MERIS radiometric products at a coastal site. Geophysical Research Letters, 33(6): L06617
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(7)

    Article Metrics

    Article views (350) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return