Citation: | Quanan Zheng, Lingling Xie, Xuejun Xiong, Xiaomin Hu, Liang Chen. Progress in research of submesoscale processes in the South China Sea[J]. Acta Oceanologica Sinica, 2020, 39(1): 1-13. doi: 10.1007/s13131-019-1521-4 |
[1] |
Alford M H. 2008. Observations of parametric subharmonic instability of the diurnal internal tide in the South China Sea. Geophysical Research Letters, 35(15): L15602. doi: 10.1029/2008GL034720
|
[2] |
Bai Xiaolin, Li Xiaofeng, Lamb K G, et al. 2017. Internal solitary wave reflection near Dongsha Atoll, the South China Sea. Journal of Geophysical Research: Oceans, 122(10): 7978–7991. doi: 10.1002/2017JC012880
|
[3] |
Belkin I M, Cornillon P C, Sherman K. 2009. Fronts in large marine ecosystems. Progress in Oceanography, 81(1–4): 223–236
|
[4] |
Buijsman M C, Kanarska Y, McWilliams J C. 2010. On the generation and evolution of nonlinear internal waves in the South China Sea. Journal of Geophysical Research: Oceans, 115(C2): C02012
|
[5] |
Callies J, Ferrari R. 2013. Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). Journal of Physical Oceanography, 43(11): 2456–2474. doi: 10.1175/JPO-D-13-063.1
|
[6] |
Callies J, Ferrari R, Klymak J M, et al. 2015. Seasonality in submesoscale turbulence. Nature Communications, 6: 6862. doi: 10.1038/ncomms7862
|
[7] |
Cao Anzhou, Guo Zheng, Song Jinbao, et al. 2018. Near-inertial waves and their underlying mechanisms based on the South China Sea Internal Wave Experiment (2010–2011). Journal of Geophysical Research: Oceans, 123(7): 5026–5040. doi: 10.1029/2018JC013753
|
[8] |
Cao Xuefeng, Shi Hongyuan, Shi Maochong, et al. 2017. Model-simulated coastal trapped waves stimulated by typhoon in northwestern South China Sea. Journal of Ocean University of China, 16(6): 965–977. doi: 10.1007/s11802-017-3255-2
|
[9] |
Capet X, McWilliams J C, Molemaker M J, et al. 2008a. Mesoscale to submesoscale transition in the California Current system. Part I: flow structure, eddy flux, and observational tests. Journal of Physical Oceanography, 38(1): 29–43
|
[10] |
Capet X, Campos E J, Paiva A M. 2008b. Submesoscale activity over the Argentinian shelf. Geophysical Research Letter, 35(15): L15605. doi: 10.1029/2008GL034736
|
[11] |
Capet X, McWilliams J C, Molemaker M J, et al. 2008c. Mesoscale to submesoscale transition in the California current system. Part III: energy balance and flux. Journal of Physical Oceanography, 38(10): 2256–2269
|
[12] |
Chang Yi, Shimada T, Lee M A, et al. 2006. Wintertime sea surface temperature fronts in the Taiwan Strait. Geophysical Research Letter, 33(23): L23603. doi: 10.1029/2006GL027415
|
[13] |
Chen Shengli, Hu Jianyu, Polton J A. 2015. Features of near-inertial motions observed on the northern South China Sea shelf during the passage of two typhoons. Acta Oceanologica Sinica, 34(1): 38–43. doi: 10.1007/s13131-015-0594-y
|
[14] |
Chen Gengxin, Xue Huijie, Wang Dongxiao, et al. 2013. Observed near-inertial kinetic energy in the northwestern South China Sea. Journal of Geophysical Research: Oceans, 118(10): 4965–4977. doi: 10.1002/jgrc.20371
|
[15] |
Chen Liang, Zheng Quanan, Xiong Xuejun, et al. 2018. A new type of internal solitary waves with a re-appearance period of 23 h observed in the South China Sea. Acta Oceanologica Sinica, 37(9): 116–118. doi: 10.1007/s13131-018-1252-y
|
[16] |
D’Asaro E A. 1988. Generation of submesoscale vortices: a new mechanism. Journal of Geophysical Research: Oceans, 93(C6): 6685–6693. doi: 10.1029/JC093iC06p06685
|
[17] |
D’Asaro E A, Lee C, Rainville L, et al. 2011. Enhanced turbulence and energy dissipation at ocean fronts. Science, 332(6027): 318–322. doi: 10.1126/science.1201515
|
[18] |
Dong Di, Yang Xiaofeng, Li Xiaofeng, et al. 2016. SAR observation of eddy-induced mode-2 internal solitary waves in the South China Sea. IEEE Transactions on Geoscience and Remote Sensing, 54(11): 6674–6686. doi: 10.1109/TGRS.2016.2587752
|
[19] |
Dong Jihai, Zhong Yisen. 2018. The spatiotemporal features of submesoscale processes in the northeastern South China Sea. Acta Oceanologica Sinica, 37(11): 8–18. doi: 10.1007/s13131-018-1277-2
|
[20] |
Farmer D M, Alford M H, Lien R C, et al. 2011. From Luzon strait to Dongsha Plateau: Stages in the life of an internal wave. Oceanography, 24(4): 64–77. doi: 10.5670/oceanog.2011.95
|
[21] |
Ferrari R, Wunsch C. 2009. Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annual Review of Fluid Mechanism, 41: 253–282. doi: 10.1146/annurev.fluid.40.111406.102139
|
[22] |
Guan Shoude, Zhao Wei, Huthnance J, et al. 2014. Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea. Journal of Geophysical Research: Oceans, 119(5): 3134–3157. doi: 10.1002/2013JC009661
|
[23] |
Gula J, Molemaker M J, McWilliams J C. 2016. Topographic generation of submesoscale centrifugal instability and energy dissipation. Nature Communication, 7: 12811. doi: 10.1038/ncomms12811
|
[24] |
Guo Lin, Xiu Peng, Chai Fei, et al. 2017. Enhanced chlorophyll concentrations induced by Kuroshio intrusion fronts in the northern South China Sea. Geophysical Research Letters, 44(22): 11565–11572. doi: 10.1002/2017GL075336
|
[25] |
He Qingyou, Zhan Haigang, Cai Shuqun, et al. 2018. A new assessment of mesoscale eddies in the South China Sea: Surface features, three-dimensional structures, and thermohaline transports. Journal of Geophysical Research: Oceans, 123(7): 4906–4929. doi: 10.1029/2018JC014054
|
[26] |
Helfrich K R, Grimshaw R H J. 2008. Nonlinear disintegration of the internal tide. Journal of Physical Oceanography, 38(3): 686–701. doi: 10.1175/2007JPO3826.1
|
[27] |
Ho C R, Kuo N J, Zheng Quanan, et al. 2000. Dynamically active areas in the South China Sea detected from TOPEX/POSEIDON satellite altimeter data. Remote Sensing of Environment, 71(3): 320–328. doi: 10.1016/S0034-4257(99)00094-2
|
[28] |
Hu Jianyu, Ho C R, Xie Lingling, et al. 2019. Regional Oceanography of the South China Sea. Singapore: World Scientific, https://doi.org/10.1142/11461
|
[29] |
Hu Jianyu, Kawamura H, Hong Huasheng, et al. 2000. A review on the currents in the South China Sea: Seasonal circulation, South China Sea Warm Current and Kuroshio Intrusion. Journal of Oceanography, 56(6): 607–624. doi: 10.1023/A:1011117531252
|
[30] |
Hu Jianyu, Kawamura H, Hong Huasheng, et al. 2001. 3≈6 months variation of sea surface height in the South China Sea and its adjacent ocean. Journal of Oceanography, 57(1): 69–78. doi: 10.1023/A:1011126804461
|
[31] |
Hu Jianyu, Kawamura H, Tang Danling. 2003. Tidal front around the Hainan Island, northwest of the South China Sea. Journal of Geophysical Research: Oceans, 108(C11): 3342. doi: 10.1029/2003JC001883
|
[32] |
Huang Xiaodong, Zhao Wei, Tian Jiwei, et al. 2014. Mooring observations of internal solitary waves in the deep basin west of Luzon Strait. Acta Oceanologica Sinica, 33(3): 82–89. doi: 10.1007/s13131-014-0416-7
|
[33] |
Jing Zhiyou, Qi Yiquan, Du Yan, et al. 2015. Summer upwelling and thermal fronts in the northwestern South China Sea: Observational analysis of two mesoscale mapping surveys. Journal of Geophysical Research: Oceans, 120(3): 1993–2006. doi: 10.1002/2014JC010601
|
[34] |
Jing Zhiyou, Qi Yiquan, Fox-Kemper B, et al. 2016. Seasonal thermal fronts on the northern South China Sea shelf: Satellite measurements and three repeated field surveys. Journal of Geophysical Research: Oceans, 121(3): 1914–1930. doi: 10.1002/2015JC011222
|
[35] |
Klemas V. 2012. Remote sensing of coastal plumes and ocean fronts: Overview and case study. Journal of Coastal Research, 28(1A): 1–7
|
[36] |
Kuo N J, Zheng Quanan, Ho C R. 2000. Satellite observation of upwelling along the western coast of the South China Sea. Remote Sensing of Environment, 74(3): 463–470. doi: 10.1016/S0034-4257(00)00138-3
|
[37] |
Lapeyre G, Klein P. 2006. Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. Journal of Physical Oceanography, 36(2): 165–176. doi: 10.1175/JPO2840.1
|
[38] |
Lévy M, Ferrari R, Franks P J S, et al. 2012. Bringing physics to life at the submesoscale. Geophysical Research Letters, 39(14): L14602
|
[39] |
Lévy M, Franks P J S, Smith K S. 2018. The role of submesoscale currents in structuring marine ecosystems. Nature Communication, 9: 4758. doi: 10.1038/s41467-018-07059-3
|
[40] |
Lévy M, Klein P, Treguier A M. 2001. Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. Journal of Marine Research, 59(4): 535–565. doi: 10.1357/002224001762842181
|
[41] |
Li Jianing, Dong Jihai, Yang Qingxuan, et al. 2018. Spatial-temporal variability of submesoscale currents in the South China Sea. Journal of Oceanology and Limnology, 37(2): 474–485
|
[42] |
Li Qiang, Farmer D M. 2011. The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. Journal of Physical Oceanography, 41(7): 1345–1363. doi: 10.1175/2011JPO4587.1
|
[43] |
Li Chunyan, Hu Jianyu, Jan S, et al. 2006. Winter-spring fronts in Taiwan Strait. Journal of Geophysical Research: Oceans, 111(C11): C11S13
|
[44] |
Li Xiaofeng, Jackson C R, Pichel W G. 2013. Internal solitary wave refraction at Dongsha Atoll, South China Sea. Geophysical Research Letters, 40(12): 3128–3132. doi: 10.1002/grl.50614
|
[45] |
Li Jiaxuan, Zhang Ren, Jin Baogang. 2011. Eddy characteristics in the Northern South China Sea as inferred from Lagrangian drifter data. Ocean Science, 7(5): 661–669. doi: 10.5194/os-7-661-2011
|
[46] |
Li Junyi, Zheng Quanan, Hu Jianyu, et al. 2015. Wavelet analysis of coastal-trapped waves along the China coast generated by winter storms in 2008. Acta Oceanologica Sinica, 34(11): 22–31. doi: 10.1007/s13131-015-0701-0
|
[47] |
Li Junyi, Zheng Quanan, Hu Jianyu, et al. 2016. A case study of winter storm-induced continental shelf waves in the northern South China Sea in winter 2009. Continental Shelf Research, 125: 127–135. doi: 10.1016/j.csr.2016.06.013
|
[48] |
Li Jianning, Dong Jihai, Yang Qingxuan, et al. 2019. Spatial-temporal variability of submesoscale currents in the South China Sea. Journal of Oceanoglogy and Limnonlogy, 37(2): 474–485. doi: 10.1007/s00343-019-8077-1
|
[49] |
Liang Xinfeng, Zhang Xiaoqian, Tian Jiwei. 2005. Observation of internal tides and near-inertial motions in the upper 450 m layer of the northern South China Sea. Chinese Science Bulletin, 50(24): 2890–2895
|
[50] |
Lien R C, Tang T Y, Chang M H, et al. 2005. Energy of nonlinear internal waves in the South China Sea. Geophysical Research Letters, 32(5): L05615
|
[51] |
Liu Guangpeng, Bracco A, Passow U. 2018a. The influence of mesoscale and submesoscale circulation on sinking particles in the northern Gulf of Mexico. Elementa Science of the Anthropocene, 6(1): 36
|
[52] |
Liu Sumei, Guo Xinyu, Chen Qi, et al. 2010b. Nutrient dynamics in the winter thermohaline frontal zone of the northern shelf region of the South China Sea. Journal of Geophysical Research: Oceans, 115(C11): C11020. doi: 10.1029/2009JC005951
|
[53] |
Liu Junliang, He Yinghui, Li Juan, et al. 2018b. Cases study of nonlinear interaction between near-inertial waves induced by typhoon and diurnal tides near the Xisha Islands. Journal of Geophysical Research: Oceans, 123(4): 2768–2784. doi: 10.1029/2017JC013555
|
[54] |
Liu Guoqiang, He Yijun, Shen Hui, et al. 2010a. Submesoscale activity over the shelf of the northern South China Sea in summer: simulation with an embedded model. Chinese Journal of Oceanology and Limnology, 28(5): 1073–1079. doi: 10.1007/s00343-010-0030-2
|
[55] |
Liu Fenfen, Tang Shilin, Chen Chuqun. 2015. Satellite observations of the small-scale cyclonic eddies in the western South China Sea. Biogeosciences, 12(2): 299–305. doi: 10.5194/bg-12-299-2015
|
[56] |
Mahadevan A, Archer D. 2000. Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean. Journal of Geophysical Research: Oceans, 105(C1): 1209–1225. doi: 10.1029/1999JC900216
|
[57] |
Mahadevan A, Tandon A. 2006. An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modelling, 14(3–4): 241–256
|
[58] |
McWilliams J C. 1985. Submesoscale, coherent vortices in the ocean. Reviews of Geophysics, 23(2): 165–182. doi: 10.1029/RG023i002p00165
|
[59] |
McWilliams J C. 2016. Submesoscale currents in the ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2189): 20160117. doi: 10.1098/rspa.2016.0117
|
[60] |
McWilliams J C. 2017. Submesoscale surface fronts and filaments: Secondary circulation, buoyancy flux, and frontogenesis. Journal of Fluid Mechanics, 823: 391–432. doi: 10.1017/jfm.2017.294
|
[61] |
Mensa J A, Garraffo Z, Griffa A, et al. 2013. Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dynamic, 63(8): 923–941. doi: 10.1007/s10236-013-0633-1
|
[62] |
Munk W, Armi L, Fischer K, et al. 2000. Spirals on the sea. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 456(1997): 1217–1280. doi: 10.1098/rspa.2000.0560
|
[63] |
Nan Feng, He Zhigang, Zhou Hui, et al. 2011. Three long-lived anticyclonic eddies in the northern South China Sea. Journal of Geophysical Research: Oceans, 116(C5): C05002
|
[64] |
Qiu Bo, Chen Shuiming, Sasaki H, et al. 2014. Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. Journal of Physical Oceanography, 44(12): 3079–3098. doi: 10.1175/JPO-D-14-0071.1
|
[65] |
Qiu Bo, Nakano T, Chen Shuiming, et al. 2017. Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean. Nature Communications, 8: 14055. doi: 10.1038/ncomms14055
|
[66] |
Qu Tangdong, Kim Y Y, Yaremchuk M, et al. 2004. Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea?. Journal of Climate, 17(18): 3644–3657. doi: 10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2
|
[67] |
Ramp S R, Tang T Y, Duda T F, et al. 2004. Internal solitons in the northeastern South China Sea part I: sources and deep water propagation. IEEE Journal of Oceanic Engineering, 29(4): 1157–1181. doi: 10.1109/JOE.2004.840839
|
[68] |
Ramp S R, Yang Y J, Bahr F L. 2010. Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Processes in Geophysics, 17(5): 481–498. doi: 10.5194/npg-17-481-2010
|
[69] |
Renault L, McWilliams J C, Gula J. 2018. Dampening of submesoscale currents by air-sea stress coupling in the Californian upwelling system. Scientific Reports, 8: 13388. doi: 10.1038/s41598-018-31602-3
|
[70] |
Sasaki H, Klein P, Sasai Y, et al. 2017. Regionality and seasonality of submesoscale and mesoscale turbulence in the North Pacific Ocean. Ocean Dynamics, 67(9): 1195–1216. doi: 10.1007/s10236-017-1083-y
|
[71] |
Shi Rui, Guo Xinyu, Wang Dongxiao, et al. 2015. Seasonal variability in coastal fronts and its influence on sea surface wind in the Northern South China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 119: 30–39. doi: 10.1016/j.dsr2.2013.12.018
|
[72] |
Shu Yeqiang, Pan Jiayi, Wang Dongxiao, et al. 2016. Generation of near-inertial oscillations by summer monsoon onset over the South China Sea in 1998 and 1999. Deep Sea Research Part I: Oceanographic Research Papers, 118: 10–19. doi: 10.1016/j.dsr.2016.10.008
|
[73] |
Sun Zhenyu, Hu Jianyu, Zheng Quanan, et al. 2011b. Strong near-inertial oscillations in geostrophic shear in the northern South China Sea. Journal of Oceanography, 67(4): 377–384. doi: 10.1007/s10872-011-0038-z
|
[74] |
Sun Lu, Zheng Quanan, Wang Dongxiao, et al. 2011a. A case study of near-inertial oscillation in the South China Sea using mooring observations and satellite altimeter data. Journal of Oceanography, 67(6): 677–687. doi: 10.1007/s10872-011-0081-9
|
[75] |
Taylor J R, Bachman S, Stamper M, et al. 2018. Submesoscale Rossby waves on the Antarctic circumpolar current. Science Advance, 4(3): eaao2824
|
[76] |
Wang Juan, Huang Weigen, Yang Jingsong, et al. 2013. Study of the propagation direction of the internal waves in the South China Sea using satellite images. Acta Oceanologica Sinica, 32(5): 42–50. doi: 10.1007/s13131-013-0312-6
|
[77] |
Wang Guihua, Li Jiaxun, Wang Chunzai, et al. 2012. Interactions among the winter monsoon, ocean eddy and ocean thermal front in the South China Sea. Journal of Geophysical Research: Oceans, 117(C8): C08002
|
[78] |
Wang Dongxiao, Liu Yun, Qi Yiquan, et al. 2001. Seasonal variability of thermal fronts in the northern South China Sea from satellite data. Geophysical Research Letters, 28(20): 3963–3966. doi: 10.1029/2001GL013306
|
[79] |
Wang Guihua, Su Jilan, Chu P C. 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters, 30(21): 2121. doi: 10.1029/2003GL018532
|
[80] |
Xiao Jingen, Xie Qiang, Wang Dongxiao, et al. 2016. On the near-inertial variations of meridional overturning circulation in the South China Sea. Ocean Science, 12(1): 335–344. doi: 10.5194/os-12-335-2016
|
[81] |
Xie Lingling, Pallàs-Sanz E, Zheng Quanan, et al. 2017. Diagnosis of 3D vertical circulation in the upwelling and frontal zones east of Hainan Island, China. Journal of Physical Oceanography, 47(4): 755–774. doi: 10.1175/JPO-D-16-0192.1
|
[82] |
Xie Xiaohui, Shang Xiaodong, van Haren H, et al. 2011. Observations of parametric subharmonic instability-induced near-inertial waves equatorward of the critical diurnal latitude. Geophysical Research Letters, 38(5): L05603
|
[83] |
Xie Lingling, Zheng Quanan. 2017. New insight into the South China Sea: Rossby normal modes. Acta Oceanologica Sinica, 36(7): 1–3. doi: 10.1007/s13131-017-1077-0
|
[84] |
Xie Lingling, Zheng Quanan, Tian Jiwei, et al. 2016. Cruise Observation of Rossby waves with finite wavelengths propagating from the Pacific to the South China Sea. Journal of Physical Oceanography, 46(10): 2897–2913. doi: 10.1175/JPO-D-16-0071.1
|
[85] |
Xie Lingling, Zheng Quanan, Zhang Shuwen, et al. 2018. The Rossby normal modes in the South China Sea deep basin evidenced by satellite altimetry. International Journal of Remote Sensing, 39(2): 399–417. doi: 10.1080/01431161.2017.1384591
|
[86] |
Xu Zhenhua, Yin Baoshu, Hou Yijun, et al. 2013. Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea. Journal of Geophysical Research: Oceans, 118(1): 197–211. doi: 10.1029/2012JC008212
|
[87] |
Yang Bing, Hou Yijun. 2014. Near-inertial waves in the wake of 2011 Typhoon Nesat in the northern South China Sea. Acta Oceanologica Sinica, 33(11): 102–111. doi: 10.1007/s13131-014-0559-6
|
[88] |
Yang Qingxuan, Nikurashin M, Sasaki H, et al. 2019. Dissipation of mesoscale eddies and its contribution to mixing in the northern South China Sea. Scientific Reports, 9: 556. doi: 10.1038/s41598-018-36610-x
|
[89] |
Ye Haijun, Kalhoro M A, Morozov E, et al. 2018. Increased chlorophyll-a concentration in the South China Sea caused by occasional sea surface temperature fronts at peripheries of eddies. International Journal of Remote Sensing, 39(13): 4360–4375. doi: 10.1080/01431161.2017.1399479
|
[90] |
Yu Jie, Zheng Quanan, Jing Zhiyou, et al. 2018. Satellite observations of sub-mesoscale vortex trains in the western boundary of the South China Sea. Journal of Marine Systems, 183: 56–62. doi: 10.1016/j.jmarsys.2018.03.010
|
[91] |
Zeng Xuezhi, Belkin I M, Peng Shiqiu, et al. 2014. East Hainan upwelling fronts detected by remote sensing and modelled in summer. International Journal of Remote Sensing, 35(11–12): 4441–4451
|
[92] |
Zhang Z, Fringer O B, Ramp S R. 2011. Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. Journal of Geophysical Research: Oceans, 116(C5): C05022
|
[93] |
Zhang Fan, Li Xiaofeng, Hu Jianyu, et al. 2014a. Summertime sea surface temperature and salinity fronts in the southern Taiwan Strait. International Journal of Remote Sensing, 35(11–12): 4452–4466
|
[94] |
Zhang Zhengguang, Qiu Bo, Klein P, et al. 2019. The influence of geostrophic strain on oceanic ageostrophic motion and surface chlorophyll. Nature Communications, 10: 2838. doi: 10.1038/s41467-019-10883-w
|
[95] |
Zhang Shuwen, Xie Lingling, Zhao Hui, et al. 2014b. Tropical storm-forced near-inertial energy dissipation in the southeast continental shelf region of Hainan Island. Science in China: Earth Science, 57(8): 1879–1884. doi: 10.1007/s11430-013-4813-0
|
[96] |
Zhao Zhongxiang. 2014. Internal tide radiation from the Luzon Strait. Journal of Geophysical Research: Oceans, 119(8): 5434–5448. doi: 10.1002/2014JC010014
|
[97] |
Zhao Zhongxiang, Klemas V, Zheng Quanan, et al. 2004. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophysical Research Letter, 31(6): L06032
|
[98] |
Zhao Zhongxiang, Liu Bingqing, Li Xiaofeng. 2014. Internal solitary waves in the China seas observed using satellite remote-sensing techniques: A review and perspectives. International Journal of Remote Sensing, 35(11–12): 3926–3946
|
[99] |
Zhao Ruixiang, Zhu Xiaohua, Park J H, et al. 2018. Internal tides in the northwestern South China Sea observed by pressure-recording inverted echo sounders. Progress in Oceanography, 168: 112–122. doi: 10.1016/j.pocean.2018.09.019
|
[100] |
Zheng Quanan. 2017. Satellite SAR Detection of Sub-Mesoscale Ocean Dynamic Processes. London: World Scientific, 121–178
|
[101] |
Zheng Quanan. 2018. Satellite SAR Detection of Sub-mesoscale Ocean Dynamic Processes (in Chinese). Xie Lingling, Ye Xiaomin, trans. Beijing: China Ocean Press, 1–215
|
[102] |
Zheng Quanan, Fang Guohong, Song Y T. 2006. Introduction to special section: Dynamics and Circulation of the Yellow, East, and South China Seas. Journal of Geophysical Research: Oceans, 111(C11): C11S01
|
[103] |
Zheng Quanan, Ho C R, Xie Lingling, et al. 2019. A case study of a Kuroshio main path cut-off event and impacts on the South China Sea in fall-winter 2013–2014. Acta Oceanologica Sinica, 38(4): 12–19. doi: 10.1007/s13131-019-1411-9
|
[104] |
Zheng Quanan, Hu Jianyu, Zhu Benlu, et al. 2014. Standing wave modes observed in the South China Sea deep basin. Journal of Geophysical Research: Oceans, 119(7): 4185–4199. doi: 10.1002/2014JC009957
|
[105] |
Zheng Quanan, Lin Hui, Meng Junmin, et al. 2008. Sub-mesoscale ocean vortex trains in the Luzon Strait. Journal of Geophysical Research: Oceans, 113(C4): C04032
|
[106] |
Zheng Quanan, Susanto R D, Ho C R, et al. 2007. Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea. Journal of Geophysical Research: Oceans, 112(C3): C03021
|
[107] |
Zheng Quanan, Tai C K, Hu Jianyu, et al. 2011. Satellite altimeter observations of nonlinear Rossby eddy–Kuroshio interaction at the Luzon Strait. Journal of Oceanography, 67(4): 365–376. doi: 10.1007/s10872-011-0035-2
|
[108] |
Zheng Quanan, Xie Lingling, Zheng Zhewen, et al. 2017. Progress in research of mesoscale eddies in the South China Sea. Advances in Marine Sciences (in Chinese), 35(2): 131–158
|
[109] |
Zhong Yisen, Bracco A. 2013. Submesoscale impacts on horizontal and vertical transport in the Gulf of Mexico. Journal of Geophysical Research: Oceans, 118(10): 5651–5668. doi: 10.1002/jgrc.20402
|
[110] |
Zhong Yisen, Bracco A, Tian Jiwei, et al. 2017. Observed and simulated submesoscale vertical pump of an anticyclonic eddy in the South China Sea. Scientific Reports, 7: 44011. doi: 10.1038/srep44011
|
[111] |
Zhu Dayong, Li Li. 2007. Near inertial oscillations in shelf-break of northern South China Sea after passage of typhoon Wayne. Journal of Tropical Oceanography (in Chinese), 26(4): 1–7
|
[112] |
Zhuang Wei, Du Yan, Wang Dongxiao, et al. 2010. Pathways of mesoscale variability in the South China Sea. Chinese Journal of Oceanologia and Limnologia, 28(5): 1055–1067. doi: 10.1007/s00343-010-0035-x
|