Citation: | Shoujin Liu, Jian Lin, Zhiyuan Zhou, Fan Zhang. Large along-axis variations in magma supply and tectonism of the Southeast Indian Ridge near the Australian-Antarctic Discordance[J]. Acta Oceanologica Sinica, 2020, 39(1): 118-129. doi: 10.1007/s13131-019-1518-z |
[1] |
Anderson R N, Spariosu D J, Weissel J K, et al. 1980. The interrelation between variations in magnetic anomaly amplitudes and basalt magnetization and chemistry along the Southeast Indian Ridge. Journal of Geophysical Research: Solid Earth, 185(B7): 3883–3898. doi: 10.1029/JB085iB07p03883
|
[2] |
Behn M D, Ito G. 2008. Magmatic and tectonic extension at mid-ocean ridges: 1. Controls on fault characteristics. Geochemistry, Geophysics, Geosystems, 9(8): Q08O10. doi: 10.1029/2008GC001965
|
[3] |
Buck W R, Lavier L L, Poliakov A N B. 2005. Modes of faulting at mid-ocean ridges. Nature, 434(7034): 719–723. doi: 10.1038/nature03358
|
[4] |
Cann J R, Blackman D K, Smith D K, et al. 1997. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature, 385(6612): 329–332
|
[5] |
Christie D M, West B P, Pyle D G, et al. 1998. Chaotic topography, mantle flow and mantle migration in the Australian-Antarctic discordance. Nature, 394(6694): 637–644. doi: 10.1038/29226
|
[6] |
Ciazela J, Koepke J, Dick H J B, et al. 2015. Mantle rock exposures at oceanic core complexes along mid-ocean ridges. Geologos, 21(4): 207–231. doi: 10.1515/logos-2015-0017
|
[7] |
Cundall P A. 1989. Numerical experiments on localization in frictional material. Ingenieur-Archiv, 58(2): 148–159. doi: 10.1007/bf00538368
|
[8] |
Dick H J B, Lin Jian, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405–412. doi: 10.1038/nature02128
|
[9] |
Escartín J, Mével C, Macleod C J, et al. 2003. Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15°45’N. Geochemistry, Geophysics, Geosystems, 4(8): 1067. doi: 10.1029/2002GC000472
|
[10] |
Escartín J, Smith D K, Cann J R, et al. 2008. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature, 455(7214): 790–794. doi: 10.1038/nature07333
|
[11] |
Gurnis M, Müller R D, Moresi L. 1998. Cretaceous vertical motion of Australia and the Australian Antarctic discordance. Science, 279(5356): 1499–1504. doi: 10.1126/science.279.5356.1499
|
[12] |
Gurnis M, Müeller R D. 2003. Origin of the Australian-Antarctic discordance from an ancient slab and mantle wedge. Geological Society of America Special Papers, 372: 417–429
|
[13] |
Hayes D E. 1976. Nature and implications of asymmetric sea-floor spreading-“different rates for different plates”. GSA Bulletin, 87(7): 994–1002. doi: 10.1130/0016-7606(1976)87<994:NAIOAS>2.0.CO;2
|
[14] |
Hayes D E. 1988. Age-depth relationships and depth anomalies in the Southeast Indian Ocean and south Atlantic Ocean. Journal of Geophysical Research: Solid Earth, 93(B4): 2937–2954. doi: 10.1029/JB093iB04p02937
|
[15] |
Hayes D E, Conolly J R. 1972. Morphology of the Southeast Indian Ocean. In: Hayes D E, ed. Antarctic Oceanology II: The Australian-New Zealand Sector. Washington D C: Wiley, 125–145,
|
[16] |
Klein E M, Langmuir C H. 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research: Solid Earth, 92(B8): 8089–8115. doi: 10.1029/JB092iB08p08089
|
[17] |
Klein E M, Langmuir C H, Staudigel H. 1991. Geochemistry of basalts from the Southeast Indian Ridge, 115°E-138°E. Journal of Geophysical Research: Solid Earth, 96(B2): 2089–2107. doi: 10.1029/90JB01384
|
[18] |
Klein E M, Langmuir C H, Zindler A, et al. 1988. Isotope evidence of a mantle convection boundary at the Australian-Antarctic Discordance. Nature, 333(6174): 623–629. doi: 10.1038/333623a0
|
[19] |
Kojima Y, Shinohara M, Mochizuki K, et al. 2003. Seismic velocity structure in the Australian-Antarctic Discordance, Segment B4 revealed by airgun-OBS experiment. In: American Geophysical Union, Fall Meeting 2003, S21F-0396
|
[20] |
Kuo Baiyuan, Forsyth D W. 1988. Gravity anomalies of the ridge-transform system in the South Atlantic between 31 and 34.5°S: Upwelling centers and variations in crustal thickness. Marine Geophysical Researches, 10(3–4): 205–232. doi: 10.1007/BF00310065
|
[21] |
Lavier L L, Buck W R. 2002. Half graben versus large-offset low-angle normal fault: Importance of keeping cool during normal faulting. Journal of Geophysical Research: Solid Earth, 107(B6): 2122. doi: 10.1029/2001JB000513
|
[22] |
Lavier L L, Buck W R, Poliakov A N B. 2000. Factors controlling normal fault offset in an ideal brittle layer. Journal of Geophysical Research: Solid Earth, 105(B10): 23431–23442. doi: 10.1029/2000JB900108
|
[23] |
Lin J, Purdy G M, Schouten H, et al. 1990. Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge. Nature, 344(6267): 627–632. doi: 10.1038/344627a0
|
[24] |
Müller R D, Sdrolias M, Gaina C, et al. 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. doi: 10.1029/2007GC001743
|
[25] |
Macdonald K C. 1990. A slow but restless ridge. Nature, 348(6297): 108–109. doi: 10.1038/348108a0
|
[26] |
MacLeod C J, Searle R C, Murton B J, et al. 2009. Life cycle of oceanic core complexes. Earth and Planetary Science Letters, 287(3–4): 333–344. doi: 10.1016/j.jpgl.2009.08.016
|
[27] |
Mahoney J J, Graham D W, Christie D M, et al. 2002. Between a hotspot and a cold spot: Isotopic variation in the Southeast Indian Ridge asthenosphere, 86°E–118°E. Journal of Petrology, 43(7): 1155–1176. doi: 10.1093/petrology/43.7.1155
|
[28] |
Marks K M, Vogt P R, Hall S A. 1990. Residual depth anomalies and the origin of the Australian-Antarctic Discordance zone. Journal of Geophysical Research: Solid Earth, 95(B11): 17325–17337. doi: 10.1029/JB095iB11p1732
|
[29] |
Ohara Y, Yoshida T, Kato Y, et al. 2001. Giant megamullion in the Parece Vela backarc basin. Marine Geophysical Researches, 22(1): 47–61. doi: 10.1023/A:1004818225642
|
[30] |
Okino K, Matsuda K, Christie D M, et al. 2004. Development of oceanic detachment and asymmetric spreading at the Australian-Antarctic Discordance. Geochemistry, Geophysics, Geosystems, 5(12): Q12012. doi: 10.1029/2004GC000793
|
[31] |
Oldenburg D W. 1974. The inversion and interpretation of gravity anomalies. Geophysics, 39(4): 526–536. doi: 10.1190/1.1440444
|
[32] |
Olive J A, Behn M D, Mittelstaedt E, et al. 2016. The role of elasticity in simulating long-term tectonic extension. Geophysical Journal International, 205(2): 728–743. doi: 10.1093/gji/ggw044
|
[33] |
Olive J A, Behn M D, Tucholke B E. 2010. The structure of oceanic core complexes controlled by the depth distribution of magma emplacement. Nature Geoscience, 3(7): 491–495. doi: 10.1038/ngeo888
|
[34] |
Parker R L. 1973. The rapid calculation of potential anomalies. Geophysical Journal International, 31(4): 447–455. doi: 10.1111/j.1365-246X.1973.tb06513.x
|
[35] |
Pyle D G, Christie D M, Mahoney J J. 1992. Resolving an isotopic boundary within the Australian-Antarctic Discordance. Earth and Planetary Science Letters, 112(1–4): 161–178. doi: 10.1016/0012-821X(92)90014-M
|
[36] |
Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205): 65–67. doi: 10.1126/science.1258213
|
[37] |
Shaw W J, Lin Jian. 1996. Models of ocean ridge lithospheric deformation: Dependence on crustal thickness, spreading rate, and segmentation. Journal of Geophysical Research: Solid Earth, 101(B8): 17977–17993. doi: 10.1029/96JB00949
|
[38] |
Smith D. 2013. Mantle spread across the sea floor. Nature Geoscience, 6(4): 247–248. doi: 10.1038/ngeo1786
|
[39] |
Tucholke B E, Behn M D, Buck W R, et al. 2008. Role of melt supply in oceanic detachment faulting and formation of megamullions. Geology, 36(6): 455–458. doi: 10.1130/G24639A.1
|
[40] |
Tucholke B E, Lin Jian. 1994. A geological model for the structure of ridge segments in slow spreading ocean crust. Journal of Geophysical Research: Solid Earth, 99(B6): 11937–11958. doi: 10.1029/94JB00338
|
[41] |
Tucholke B E, Lin Jian, Kleinrock M C. 1998. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. Journal of Geophysical Research: Solid Earth, 103(B5): 9857–9866. doi: 10.1029/98JB00167
|
[42] |
Vogt P R, Cherkis N Z, Morgan G A. 1983. Project Investigator-I: Evolution of the Australian-Antarctic Discordance deduced from a detailed aeromagnetic study. In: Oliver R L, James P R, Jago J B, eds. Antarctic Earth Science: 4th International Symposium. Camberra: Cambridge University Press, 608–613
|
[43] |
Wang Tingting, Lin Jian, Tucholke B E, et al. 2011. Crustal thickness anomalies in the North Atlantic Ocean basin from gravity analysis. Geochemistry, Geophysics, Geosystems, 12(3): Q0AE02. doi: 10.1029/2010GC003402
|
[44] |
Weissel J K, Hayes D E. 1971. Asymmetric seafloor spreading south of Australia. Nature, 231(5304): 518–522. doi: 10.1038/231518a0
|
[45] |
Zhou Zhiyuan, Lin Jian, Behn M, Olive J A. 2015. Mechanism for normal faulting in the subducting plate at the Mariana Trench. Geophysical Research Letters, 42(11): 4309–4317. doi: doi:10.1002/2015GL063917
|
[46] |
Zhou Zhiyuan, Lin Jian. 2018. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench. Tectonophysics, 734–735: 59–68. doi: 10.1016/j.tecto.2018.04.008
|
[47] |
Zhou Zhiyuan, Lin Jian, Zhang Fan. 2018. Modeling of normal faulting in the subducting plates of the Tonga, Japan, Izu-Bonin and Mariana Trenches: implications for near-trench plate weakening. Acta Oceanologica Sinica, 37(11): 53–60. doi: 10.1007/s13131-0181146-z
|