Volume 39 Issue 3
Apr.  2020
Turn off MathJax
Article Contents
Xudong Zhang, Jie Zhang, Junmin Meng, Chenqing Fan, Jing Wang. Observation of internal waves with OLCI and SRAL on board Sentinel-3[J]. Acta Oceanologica Sinica, 2020, 39(3): 56-62. doi: 10.1007/s13131-019-1510-7
Citation: Xudong Zhang, Jie Zhang, Junmin Meng, Chenqing Fan, Jing Wang. Observation of internal waves with OLCI and SRAL on board Sentinel-3[J]. Acta Oceanologica Sinica, 2020, 39(3): 56-62. doi: 10.1007/s13131-019-1510-7

Observation of internal waves with OLCI and SRAL on board Sentinel-3

doi: 10.1007/s13131-019-1510-7
Funds:  The National Key R&D Program of China under contract No. 2016YFC1401005; the National Youth Natural Science Foundation of China under contract Nos 41906157 and 61501130; the National Natural Science Foundation of China under contract No. 61471136; the Global Change and Air-Sea Interaction Program of China under contract No. GASI-02-SCS-YGST2-04.
More Information
  • Corresponding author: Email: mengjm@fio.org.cn
  • Received Date: 2018-10-24
  • Accepted Date: 2018-11-21
  • Available Online: 2020-04-21
  • Publish Date: 2020-03-25
  • The ocean and land color instrument (OLCI) and synthetic aperture radar altimeter (SRAL) installed aboard the Sentinel-3 satellite have been in orbit for operational uses. In this study, data collected from Sentinel-3 are used to investigate internal waves in the South China Sea. An internal wave is detected using an OLCI image with a resolution of 300 m, and an analysis was performed with a quasi-synchronous moderate-resolution imaging spectroradiometer (MODIS) image. The opposite characteristics of OLCI and MODIS images of the same internal wave are explained by the critical angle in brightness reversals. The unique observational geometry of the OLCI image and its influence on observations of internal waves are discussed. The distribution of σ0 and sea surface height anomalies (SSHAs) induced by internal waves are studied using SRAL records. The σ0 records of SRAL occasionally show less sensitivity to the modulation of internal waves, which may be attributed to the observational geometry, while SSHAs show obvious variations. The synchronous pairing of OLCI images and SRAL records are analyzed to extract the three-dimensional sea surface signatures induced by internal waves. The analysis demonstrates that the profile of SSHAs in the surface shows an opposite phase to the profiles of internal waves in the ocean. The opposite phase relationship, observed in the remote sensing view, is also confirmed with a laboratory experiment.
  • loading
  • [1]
    Alford M H, Lien R C, Simmons H, et al. 2010. Speed and evolution of nonlinear internal waves transiting the South China Sea. Journal of Physical Oceanography, 40(6): 1338–1355. doi: 10.1175/2010JPO4388.1
    [2]
    Alford M H, Peacock T, MacKinnon J A, et al. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550): 65–69. doi: 10.1038/nature14399
    [3]
    Alpers W. 1985. Theory of radar imaging of internal waves. Nature, 314(6008): 245–247. doi: 10.1038/314245a0
    [4]
    Bai Xiaolin, Li Xiaofeng, Lamb K G, et al. 2017. Internal Solitary Wave Reflection Near Dongsha Atoll, the South China Sea. Journal of Geophysical Research: Oceans, 122(10): 7978–7991. doi: 10.1002/2017JC012880
    [5]
    Bai Xiaolin, Liu Zhiyu, Li Xiaofeng, et al. 2014. Generation sites of internal solitary waves in the southern Taiwan Strait revealed by MODIS true-colour image observations. International Journal of Remote Sensing, 35(11–12): 4086–4098. doi: 10.1080/01431161.2014.916453
    [6]
    Bai Xiaolin, Liu Zhiyu, Li Xiaofeng, et al. 2013. Observations of high-frequency internal waves in the Southern Taiwan Strait. Journal of Coastal Research, 29(6): 1413–1419. doi: 10.2112/JCOASTRES-D-12-00141.1
    [7]
    Bonekamp H, Montagner F, Santacesaria V, et al. 2016. Core operational Sentinel-3 marine data product services as part of the Copernicus Space Component. Ocean Science, 12(3): 787–795. doi: 10.5194/os-12-787-2016
    [8]
    Cox C, Munk W. 1954. Measurement of the roughness of the sea surface from photographs of the sun’s glitter. Journal of the Optical Society of America, 44(11): 838–850. doi: 10.1364/JOSA.44.000838
    [9]
    Da Silva J C B, Cerqueira A L F. 2016. A note on radar altimeter signatures of internal solitary waves in the ocean. In: Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2016. Edinburgh, United Kingdom: SPIE
    [10]
    Da Silva J C B, Ermakov S A, Robinson I S, et al. 1998. Role of surface films in ERS SAR signatures of internal waves on the shelf: 1. Short-period internal waves. Journal of Geophysical Research: Oceans, 103(C4): 8009–8031. doi: 10.1029/97JC02725
    [11]
    Gill A E. 1982. Atmosphere-Ocean Dynamics (International Geophysics Series). London: Academic Press
    [12]
    Guo Daquan, Akylas T R, Zhan Peng, et al. 2016. On the generation and evolution of internal solitary waves in the southern Red Sea. Journal of Geophysical Research: Oceans, 121(12): 8566–8584. doi: 10.1002/2016JC012221
    [13]
    Jackson C. 2007. Internal wave detection using the moderate resolution imaging spectroradiometer (MODIS). Journal of Geophysical Research: Oceans, 112(C11): C11012. doi: 10.1029/2007JC004220
    [14]
    Jackson C R, Alpers W. 2010. The role of the critical angle in brightness reversals on sunglint images of the sea surface. Journal of Geophysical Research: Oceans, 115(C9): C09019
    [15]
    Jiang Maofei, Xu Ke, Liu Yalong, et al. 2016. Estimating the sea state bias of Jason-2 altimeter from crossover differences by using a three-dimensional nonparametric model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(11): 5023–5043. doi: 10.1109/JSTARS.2016.2557839
    [16]
    Kozlov I, Romanenkov D, Zimin A, et al. 2014. SAR observing large-scale nonlinear internal waves in the White Sea. Remote Sensing of Environment, 147: 99–107. doi: 10.1016/j.rse.2014.02.017
    [17]
    Liu Bingqing, Yang Hong, Zhao Zhongxiang, et al. 2014. Internal solitary wave propagation observed by tandem satellites. Geophysical Research Letters, 41(6): 2077–2085. doi: 10.1002/2014GL059281
    [18]
    Magalhães J M, da Silva J C B. 2017. Satellite altimetry observations of large-scale internal solitary waves. IEEE Geoscience and Remote Sensing Letters, 14(4): 534–538. doi: 10.1109/LGRS.2017.2655621
    [19]
    Melsheimer C, Keong K L. 2001. Sun glitter in SPOT images and the visibility of oceanic phenomena.Singapore: The 22nd Asian Conference on Remote Sensing.
    [20]
    Mitchum G T, Hancock D W III, Hayne G S, et al. 2004. Blooms of σ0 in the TOPEX radar altimeter data. Journal of Atmospheric and Oceanic Technology, 21(8): 1232–1245. doi: 10.1175/1520-0426(2004)021<1232:BOITTR>2.0.CO;2
    [21]
    Morrow R, Le Traon P Y. 2012. Recent advances in observing mesoscale ocean dynamics with satellite altimetry. Advances in Space Research, 50(8): 1062–1076. doi: 10.1016/j.asr.2011.09.033
    [22]
    Osborne A R, Burch T L. 1980. Internal solitons in the Andaman Sea. Science, 208(4443): 451–460. doi: 10.1126/science.208.4443.451
    [23]
    Pan Xiaoyi, Wang Jing, Zhang Xudong, et al. 2018. A deep-learning model for the amplitude inversion of internal waves based on optical remote-sensing images. International Journal of Remote Sensing, 39(3): 607–618. doi: 10.1080/01431161.2017.1390269
    [24]
    Ramp S R, Tang T Y, Duda T F, et al. 2004. Internal solitons in the northeastern South China Sea. Part I: sources and deep water propagation. IEEE Journal of Oceanic Engineering, 29(4): 1157–1181. doi: 10.1109/JOE.2004.840839
    [25]
    Santos-Ferreira A M, da Silva J C B, Magalhaes J M. 2018. SAR mode altimetry observations of internal solitary waves in the tropical ocean Part 1: Case studies. Remote Sensing, 10(4): 644. doi: 10.3390/rs10040644
    [26]
    Tran N, Hancock D W III, Hayne G S, et al. 2002. Assessment of the cycle-to-cycle noise level of the Geosat Follow-On, TOPEX, and Poseidon altimeters. Journal of Atmospheric and Oceanic Technology, 19(12): 2095–2107. doi: 10.1175/1520-0426(2002)019<2095:AOTCTC>2.0.CO;2
    [27]
    Zaouche G, Perbos J, Lafon T, et al. 2010. OSTM/Jason-2: Assessment of the system performances (ocean surface topography mission: OSTM). Marine Geodesy, 33(S1): 26–52
    [28]
    Zhang Xudong, Wang Jing, Sun Lina, et al. 2016. Study on the amplitude inversion of internal waves at Wenchang area of the South China Sea. Acta Oceanologica Sinica, 35(7): 14–19. doi: 10.1007/s13131-016-0902-1
    [29]
    Zhang Xudong, Zhang Jie, Fan Chenqing, et al. 2018. Observations of internal waves with high sampling data of radar altimetry and MODIS images. International Journal of Remote Sensing, 39(21): 7405–7416. doi: 10.1080/01431161.2018.1470700
    [30]
    Zhao Zhongxiang. 2016. Using CryoSat-2 altimeter data to evaluate M2 internal tides observed from multisatellite altimetry. Journal of Geophysical Research: Oceans, 121(7): 5164–5180. doi: 10.1002/2016JC011805
    [31]
    Zheng Quanan, Yuan Yeli, Klemas V, et al. 2001. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width. Journal of Geophysical Research: Oceans, 106(C12): 31415–31423. doi: 10.1029/2000JC000726
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (950) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return