Citation: | Zhang Fan, Lin Jian, Zhou Zhiyuan. Intra-trench variations in flexural bending of the subducting Pacific Plate along the Tonga-Kermadec Trench[J]. Acta Oceanologica Sinica, 2019, 38(11): 81-90. doi: 10.1007/s13131-019-1493-4 |
Arredondo K M, Billen M I. 2012. Rapid weakening of subducting plates from trench-parallel estimates of flexural rigidity. Physics of the Earth and Planetary Interiors, 196-197:1-13, doi: 10.1016/j.pepi.2012.02.007
|
Ballance P F, Scholl D W, Vallier T L, et al. 1989. Subduction of a late cretaceous seamount of the Louisville ridge at the Tonga trench:a model of normal and accelerated tectonic erosion. Tectonics, 8(5):953-962, doi: 10.1029/TC008i005p00953
|
Billen M I, Gurnis M. 2005. Constraints on subducting plate strength within the Kermadec trench. Journal of Geophysical Research, 110(B5):B05407
|
Bird P. 2003. An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3):1027
|
Bodine J H, Watts A B. 1979. On lithospheric flexure seaward of the Bonin and Mariana trenches. Earth and Planetary Science Letters, 43(1):132-148, doi: 10.1016/0012-821X(79)90162-6
|
Bry M, White N. 2007. Reappraising elastic thickness variation at oceanic trenches. Journal of Geophysical Research, 112(B8):B08414
|
Chen J Y, Morgan J. 1990. A nonlinear rheology model for mid-ocean ridge axis topography. Journal of Geophysical Research, 95:17583-17604
|
Clift P D, MacLeod C J. 1999. Slow rates of subduction erosion estimated from subsidence and tilting of the Tonga forearc. Geology, 27(5):411-414, doi: 10.1130/0091-7613(1999)027<0411:SROSEE>2.3.CO;2
|
Collot J Y, Davy B. 1998. Forearc structures and tectonic regimes at the oblique subduction zone between the Hikurangi Plateau and the southern Kermadec margin. Journal of Geophysical Research, 103(B1):623-650, doi: 10.1029/97JB02474
|
Contreras-Reyes E, Grevemeyer I, Watts A B, et al. 2011. Deep seismic structure of the Tonga subduction zone:implications for mantle hydration, tectonic erosion, and arc magmatism. Journal of Geophysical Research, 116(B10):B10103, doi: 10.1029/2011JB008434
|
Contreras-Reyes E, Osses A. 2010. Lithospheric flexure modelling seaward of the Chile trench:Implications for oceanic plate weakening in the trench outer rise region. Geophysical Journal International, 182(1):97-112
|
Ding Min, Lin Jian. 2016. Deformation and faulting of subduction overriding plate caused by a subducted seamount. Geophysical Research Letters, 43(17):8936-8944, doi: 10.1002/2016GL069785
|
Divins D L. 2003. Total sediment thickness of the world's oceans and marginal seas. NOAA National Geophysical Data Center, Boulder, CO. http://www.ngdc.noaa.gov/mgg/sedthick/sedthick.html
|
Funnell M, Peirce C, Stratford W, et al. 2014. Crustal Structure and Flexural Characteristics of the Louisville Ridge and Tonga-Kermadec Subduction System. San Francisco, USA:AGU Fall Meeting, T53C-4694
|
Garcia-Castellanos D, Torne M, Fernàndez M. 2010. Slab pull effects from a flexural analysis of the Tonga and Kermadec trenches (Pacific Plate). Geophysical Journal International, 141(2):479-484
|
Goetze C, 1978. The mechanisms of creep in olivine:Philosophical Transactions of the Royal Society London, 288:99-119
|
Goetze C, Evans B, 1979. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophysical Journal of the Royal Astronomical Society, 59:463-478
|
Hanks T C. 1971. The Kuril trench-Hokkaido Rise system:Large shallow earthquakes and simple models of deformation. Geophysical Journal International, 23(2):173-189, doi: 10.1111/j.1365-246X.1971.tb01811.x
|
Harris R, Chapman D S. 1994. A comparison of mechanical thickness estimates from trough and seamount loading in the southeastern Gulf of Alaska. Journal of Geophysical Research, 95(B5):9297-9317
|
Hunter J, Watts A B. 2016. Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches. Geophysical Journal International, 207(1):288-316, doi: 10.1093/gji/ggw275
|
Judge A V, McNutt M K. 1991. The relationship between plate curvature and elastic plate thickness:a study of the Peru-Chile trench. Journal of Geophysical Research, 96(B10):16625-16639, doi: 10.1029/90JB01772
|
Kirby S H, 1983. Rheology of the lithosphere. Reviews Of Geophysics, 21:1458-1487
|
Kuo B Y, Forsyth D W. 1988. Gravity anomalies of the ridge-transform system in the South Atlantic between 31 and 34.5°S:upwelling centers and variations in crustal thickness. Marine Geophysical Researches, 10(3-4):205-232, doi: 10.1007/BF00310065
|
Lin Jian, Zhu Jian. 2015. Global variations in gravity-derived oceanic crustal thickness and implications on oceanic crustal accretion processes. AGU Fall Meeting, 17:30
|
Lonsdale P. 1986. A multibeam reconnaissance of the Tonga trench axis and its intersection with the Louisville guyot chain. Marine Geophysical Researches, 8(4):295-327, doi: 10.1007/BF02084016
|
Müller R D, Sdrolias M, Gaina C, et al. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 9(4):Q04006
|
Naliboff J B, Billen M I, Gerya T, et al. 2013. Dynamics of outer-rise faulting in oceanic-continental subduction systems. Geochemistry, Geophysics, Geosystems, 14(7):2310-2327, doi: 10.1002/ggge.20155
|
Parker R L. 1973. The rapid calculation of potential anomalies. Geophysical Journal of the Royal Astronomical Society, 31(4):447-455, doi: 10.1111/j.1365-246X.1973.tb06513.x
|
Ranero C R, Villaseñor A, Phipps Morgan J, et al. 2005. Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochemistry, Geophysics, Geosystems, 6(12):Q12002
|
Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205):65-67, doi: 10.1126/science.1258213
|
Tang Minqiang, Lin Jian, Shi Xiaobin, et al. 2013. Variations in flexural bending of subducting plates along the Japan, Philippine, and Mariana trenches (abstract). AGU Fall Meeting, D133A-2233
|
Turcotte D, Schubert G. 2014. Geodynamics. 3rd ed. Cambridge, United Kingdom:Cambridge University Press, 636
|
Turcotte D, McAdoo D C, Caldwell J G. 1978. An elastic-perfectly plastic analysis of the bending of the lithosphere at a trench. Tectonophysics, 47:193-205
|
Wang Tingting, Lin Jian, Tucholke B, et al. 2011. Crustal thickness anomalies in the North Atlantic Ocean basin from gravity analysis. Geochemistry, Geophysics, Geosystems, 12(3):Q0AE02
|
Watts A B. 2001. Isostasy and Flexure of the Lithosphere. Cambridge:Cambridge University Press, 458
|
Weatherall P, Marks K M, Jakobsson M, et al. 2015. A new digital bathymetric model of the world's oceans. Earth and Space Science, 2(8):331-345, doi: 10.1002/2015EA000107
|
Zhang Fan, Lin Jian, Zhan Wenhuan. 2014. Variations in oceanic plate bending along the Mariana trench. Earth and Planetary Science Letters, 401:206-214, doi: 10.1016/j.epsl.2014.05.032
|
Zhang Fan, Lin Jian, Zhou Zhiyuan, et al. 2018. Intra-and intertrench variations in flexural bending of the Manila, Mariana and global trenches:Implications on plate weakening in controlling trench dynamics. Geophysical Journal International, 212(2):1429-1449, doi: 10.1093/gji/ggx488
|
Zhou Zhiyuan, Lin Jian. 2018. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench. Tectonophysics, 734-735:59-68, doi: 10.1016/j.tecto.2018.04.008
|
Zhou Zhiyuan, Lin Jian, Behn M D, et al. 2015. Mechanism for normal faulting in the subducting plate at the Mariana Trench. Geophysical Research Letters, 42(11):4309-4317, doi: 10.1002/2015GL063917
|
Zhou Zhiyuan, Lin Jian, Zhang Fan. 2018. Modeling of normal faulting in the subducting plates of the Tonga, Japan, Izu-Bonin, and Mariana trenches:Implications for near-trench plate weakening. Acta Oceanologica Sinica, 37(11):1-8, doi: 10.1007/s13131-018-1330-1
|