Citation: | Guan Wenjiang, Wu Jiawen, Tian Siquan. Evaluation of the performance of alternative assessment configurations to account for the spatial heterogeneity in age-structure: a simulation study based on Indian Ocean albacore tuna[J]. Acta Oceanologica Sinica, 2019, 38(10): 9-19. doi: 10.1007/s13131-019-1485-4 |
Akaike H. 1973. Information theory and an extension of the maximum likelihood principle. In: Proceedings of the 2nd International Symposium on Information Theory. Budapest: Academiai Kiado, 267–281
|
Berger A M, Jones M L, Zhao Yingming, et al. 2012. Accounting for spatial population structure at scales relevant to life history improves stock assessment: The case for Lake Erie walleye Sander vitreus. Fisheries Research, 115–116: 44–59, doi: 10.1016/j.fishres.2011.11.006
|
Butterworth D S. 2007. Why a management procedure approach? Some positives and negatives. ICES Journal of Marine Science, 64(4): 613–617, doi: 10.1093/icesjms/fsm003
|
Carvalho F, Punt A E, Chang Y J, et al. 2017. Can diagnostic tests help identify model misspecification in integrated stock assessments?. Fisheries Research, 192: 28–40, doi: 10.1016/j.fishres.2016.09.018
|
Chen I C, Lee P F, Tzeng W N. 2005. Distribution of albacore (Thunnus alalunga) in the Indian Ocean and its relation to environmental factors. Fisheries Oceanography, 14(1): 71–80, doi: 10.1111/j.1365-2419.2004.00322.x
|
Cope J M, Punt A E. 2011. Reconciling stock assessment and management scales under conditions of spatially varying catch histories. Fisheries Research, 107(1-3): 22–38, doi: 10.1016/j.fishres.2010.10.002
|
Farley J H, Williams A J, Davies C R, et al. 2012. Population biology of albacore tuna in the Australian region. Hobar, Tasmania: CSIRO Marine and Atmospheric Research
|
Fornteneau A. 2016. Indian Ocean albacore stock: review of its fishery, biological data and results of its 2014 stock assessment. Shanghai, China: Working Party on Temperate Tuna
|
Fournier D A, Hampton J, Sibert J R. 1998. MULTIFAN-CL: a length-based, age-structured model for fisheries stock assessment, with application to South Pacific albacore, Thunnus alalunga. Canadian Journal of Fisheries and Aquatic Sciences, 55(9): 2105–2116, doi: 10.1139/f98-100
|
Francis R I C C. 2011. Data weighting in statistical fisheries stock assessment models. Canadian Journal of Fisheries and Aquatic Sciences, 68(6): 1124–1138, doi: 10.1139/f2011-025
|
Goethel D R, Quinn T J, Cadrin S X. 2011. Incorporating spatial structure in stock assessment: Movement modeling in marine fish population dynamics. Reviews in Fisheries Science, 19(2): 119–136, doi: 10.1080/10641262.2011.557451
|
Guan Wenjiang, Cao Jie, Chen Yong, et al. 2013. Impacts of population and fishery spatial structures on fishery stock assessment. Canadian Journal of Fisheries and Aquatic Sciences, 70(8): 1178–1189, doi: 10.1139/cjfas-2012-0364
|
Guan Wenjiang, Tang Lin, Zhu Jiangfeng, et al. 2016a. Application of a Bayesian method to data-poor stock assessment by using Indian Ocean albacore (Thunnus alalunga) stock assessment as an example. Acta Oceanologica Sinica, 35(2): 117–125, doi: 10.1007/s13131-016-0814-0
|
Guan Wenjiang, Zhu Jiangfeng, Xu Liuxiong, et al. 2016b. Using a Bayesian biomass dynamics model to assess Indian Ocean albacore (Thunnus alalunga). Shanghai, China: Working Party Temperature Tuna
|
Helu S L, Sampson D B, Yin Yanshui. 2000. Application of statistical model selection criteria to the Stock Synthesis assessment program. Canadian Journal of Fisheries and Aquatic Sciences, 57(9): 1784–1793, doi: 10.1139/f00-137
|
Hoyle S D, Sharma R, Herrera M. 2014. Stock assessment of albacore tuna in the Indian Ocean for 2014 using Stock Synthesis. Busan, Korea: Working Party on Temperate Tuna
|
Hurtado-Ferro F, Punt A E, Hill K T. 2014. Use of multiple selectivity patterns as a proxy for spatial structure. Fisheries Research, 158: 102–115, doi: 10.1016/j.fishres.2013.10.001
|
Langley A, Hoyle S. 2016. Stock assessment of albacore tuna in the Indian Ocean using stock synthesis. Shanghai, China: Working Party on Temperate Tuna
|
Lee H H, Piner K R, Maunder M N, et al. 2017. Evaluation of alternative modelling approaches to account for spatial effects due to age-based movement. Canadian Journal of fisheries and Aquatic Sciences, 74(11): 1832–1844, doi: 10.1139/cjfas-2016-0294
|
Lehodey P, Senina I, Murtugudde R. 2008. A spatial ecosystem and populations dynamics model (SEAPODYM) -Modeling of tuna and tuna-like populations. Progress in Oceanography, 78(4): 304–318, doi: 10.1016/j.pocean.2008.06.004
|
Matsumoto T. 2016. Stock and risk assessments of albacore in the Indian Ocean based on ASPIC. Shanghai, China: Working Party on Temperature Tuna
|
McAllister M K, Ianelli J N. 1997. Bayesian stock assessment using catch-age data and the sampling-importance resampling algorithm. Canadian Journal of Fisheries and Aquatic Sciences, 54(2): 284–300
|
Methot R D Jr, Wetzel C R. 2013. Stock Synthesis: a biological and statistical framework for fish stock assessment and fishery management. Fisheries Research, 142: 86–99, doi: 10.1016/j.fishres.2012.10.012
|
Nikolic N, Fonteneau A, Hoarau L, et al. 2014. Short review on biology, structure, and migration of Thunnus alalunga in the Indian Ocean. Busan, Korea: Working Party on Temperature Tuna
|
Nishida T, Kitakado T, Matsumoto T, et al. 2014. Consideration of albacore parameters for stock assessments in the Indian Ocean. Busan, Korea: Working Party on Temperature Tuna
|
Nishida T, Sato K, Chang Y, et al. 2016. Stock assessment of albacore Thunnus alalunga in the Indian Ocean using Statistical-Catch-At-Age (SCAA). Shanghai, China: Working Party on Temperature Tuna
|
Ono K, Licandeo R R, Muradian M L, et al. 2015. The importance of length and age composition data in statistical age-structured models for marine species. ICES Journal of Marine Science, 72(1): 31–43, doi: 10.1093/icesjms/fsu007
|
Penney A J. 1994. Morphometric relationships, annual catches and catch-at-size for South African caught south Atlantic albacore (Thunnus alalunga). Collective Volume of Scientific Papers, 42(1): 371–382
|
Punt A E, Butterworth D S, de Moor C L, et al. 2016. Management strategy evaluation: best practices. Fish and Fisheries, 17(2): 303–334, doi: 10.1111/faf.12104
|
Punt A E, Haddon M, Tuck G N. 2015. Which assessment configurations perform best in the face of spatial heterogeneity in fishing mortality, growth and recruitment? A case study based on pink ling in Australia. Fisheries Research, 168: 85–99, doi: 10.1016/j.fishres.2015.04.002
|
Punt A E, Hurtado-Ferro F, Whitten A R. 2014. Model selection for selectivity in fisheries stock assessments. Fisheries Research, 158: 124–134, doi: 10.1016/j.fishres.2013.06.003
|
Schwarz G. 1978. Estimating the dimension of a model. The Annals of Statistics, 6(2): 461–464, doi: 10.1214/aos/1176344136
|
Senina I, Sibert J, Lehodey P. 2008. Parameter estimation for basin-scale ecosystem-linked population models of large pelagic predators: application to skipjack tuna. Progress in Oceanography, 78(4): 319–335, doi: 10.1016/j.pocean.2008.06.003
|
Spiegelhalter D J, Best N G, Carlin B P, et al. 2002. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society Series B-Statistical Methodology, 64(4): 583–639, doi: 10.1111/1467-9868.00353
|
Stephenson R L, Melvin G D, Power M J. 2009. Population integrity and connectivity in Northwest Atlantic herring: a review of assumptions and evidence. ICES Journal of Marine Science, 66(8): 1733–1739, doi: 10.1093/icesjms/fsp189
|
Szuwalski C S, Punt A E. 2015. Can an aggregate assessment reflect the dynamics of a spatially structured stock? Snow crab in the eastern Bering Sea as a case study. Fisheries Research, 164: 135–142, doi: 10.1016/j.fishres.2014.10.020
|
Waterhouse L, Sampson D B, Maunder M, et al. 2014. Using areas-as-fleets selectivity to model spatial fishing: asymptotic curves are unlikely under equilibrium conditions. Fisheries Research, 158: 15–25, doi: 10.1016/j.fishres.2014.01.009
|
Wells R J D, Kohin S, Teo S L H, et al. 2013. Age and growth of North Pacific albacore (Thunnus alalunga): implications for stock assessment. Fisheries Research, 147: 55–62, doi: 10.1016/j.fishres.2013.05.001
|
Ying Yiping, Chen Yong, Lin Longshan, et al. 2011. Risks of ignoring fish population spatial structure in fisheries management. Canadian Journal of Fisheries and Aquatic Sciences, 68(12): 2101–2120, doi: 10.1139/f2011-116
|