FAN Chenqing, WANG Xiaochen, ZHANG Xudong, GAO Dong. A newly developed ocean significant wave height retrieval method from Envisat ASAR wave mode imagery[J]. Acta Oceanologica Sinica, 2019, 38(9): 120-127. doi: 10.1007/s13131-019-1480-2
Citation: FAN Chenqing, WANG Xiaochen, ZHANG Xudong, GAO Dong. A newly developed ocean significant wave height retrieval method from Envisat ASAR wave mode imagery[J]. Acta Oceanologica Sinica, 2019, 38(9): 120-127. doi: 10.1007/s13131-019-1480-2

A newly developed ocean significant wave height retrieval method from Envisat ASAR wave mode imagery

doi: 10.1007/s13131-019-1480-2
  • Received Date: 2018-01-19
  • The main objective of this paper is to propose a newly developed ocean Significant Wave Height (SWH) retrieval method from Envisat Advanced Synthetic Aperture Radar (ASAR) imagery. A series of wave mode imagery from January, April and May of 2011 are collocated with ERA-Interim reanalysis SWH data. Based on the matched datasets, a simplified empirical relationship between 22 types of SAR imagery parameters and SWH products is developed with the Genetic Algorithms Partial Least-Squares (GA-PLS) model. Two major features of the backscattering coefficient σ0 and the frequency parameter S10 are chosen as the optimal training feature subset of SWH retrieval by using cross validation. In addition, we also present a comparison of the retrieval results of the simplified empirical relationship with the collocated ERA-Interim data. The results show that the assessment index of the correlation coefficient, the bias, the root-mean-square error of cross validation (RMSECV) and the scattering index (SI) are 0.78, 0.07 m, 0.76 m and 0.5, respectively. In addition, the comparison of the retrieved SWH data between our simplifying model and the Jason-2 radar altimeter data is proposed in our study. Moreover, we also make a comparison of the retrieval of SWH data between our developed model and the well-known CWAVE_ENV model. The results show that satisfying retrieval results are acquired in the low-moderate sea state, but major bias appears in the high sea state, especially for SWH>5 m.
  • Bruck M, Lehner S. 2015. TerraSAR-X/TanDEM-X Sea state measurements using the XWAVE algorithm. International Journal of Remote Sensing, 36(15):3890-3912, doi: 10.1080/01431161.2015.1051630
    Collard F, Ardhuin F, Chapron B. 2005. Extraction of coastal ocean wave fields from SAR images. IEEE Journal of Oceanic Engineering, 30(3):526-533, doi: 10.1109/JOE.2005.857503
    Engen G, Johnsen H. 1995. SAR-ocean wave inversion using image cross spectra. IEEE Transactions on Geoscience and Remote Sensing, 33(4):1047-1056, doi: 10.1109/36.406690
    Geladi P, Kowalski B P. 1986. Partial least-squares regression:a tutorial. Analytica Chimica Acta, 185:1-17, doi: 10.1016/0003-2670(86)80028-9
    Gonzalez F I, Beal R C, Brown W E, et al. 1979. Seasat synthetic aperture radar:ocean wave detection capabilities. Science, 204(4400):1418-1421, doi: 10.1126/science.204.4400.1418
    Grieco G, Lin Wenming, Migliaccio M, et al. 2016. Dependency of the sentinel-1 azimuth wavelength cut-off on significant wave height and wind speed. International Journal of Remote Sensing, 37(21):5086-5104, doi: 10.1080/01431161.2016.1226525
    Hasselmann K, Hasselmann S. 1991. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. Journal of Geophysical Research:Oceans, 96(C6):10713-10729, doi: 10.1029/91JC00302
    He Yijun, Perrie W, Xie Tao, et al. 2004. Ocean wave spectra from a linear polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 42(11):2623-2631, doi: 10.1109/TGRS.2004.836813
    Kawamura K, Watanabe N, Sakanoue S, et al. 2010. Testing genetic algorithm as a tool to select relevant wavebands from field hyperspectral data for estimating pasture mass and quality in a mixed sown pasture using partial least squares regression. Grassland Science, 56(4):205-216, doi: 10.1111/grs.2010.56.issue-4
    Leardi R, González A L. 1998. Genetic algorithms applied to feature selection in PLS regression:how and when to use them. Chemometrics and Intelligent Laboratory Systems, 41(2):195-207, doi: 10.1016/S0169-7439(98)00051-3
    Li Bingyan, Gong Huaze, Shao Yun, et al. 2016. The consistency between Na content distribution at the subsurface and the lake body's movement in Lop Nur. International Journal of Digital Earth, 9(7):662-675, doi: 10.1080/17538947.2015.1112439
    Li Xiaoming, Lehner S, Bruns T. 2011. Ocean wave integral parameter measurements using envisat ASAR wave mode data. IEEE Transactions on Geoscience and Remote Sensing, 49(1):155-174, doi: 10.1109/TGRS.2010.2052364
    Li Lin, Ustin S L, Riano D. 2007. Retrieval of fresh leaf fuel moisture content using genetic algorithm partial least squares (GA-PLS) modeling. IEEE Geoscience and Remote Sensing Letters, 4(2):216-220, doi: 10.1109/LGRS.2006.888847
    Long R B. 1980. The statistical evaluation of directional spectrum estimates derived from pitch/roll buoy data. Journal of Physical Oceanography, 10(6):944-952, doi: 10.1175/1520-0485(1980)010<0944:TSEODS>2.0.CO;2
    Longuet-Higgins M S, Cartwright D E, Smith N D. 1963. Observations of the directional spectrum of sea waves using the motions of a floating buoy. In:Ocean Wave Spectrum. Englewood Cliffs, NJ:Prentice-Hall Inc, 111–136
    Mastenbroek C, de Valk C F. 2000. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar. Journal of Geophysical Research:Oceans, 105(C2):3497-3516, doi: 10.1029/1999JC900282
    Monaldo F. 1988. Expected differences between buoy and radar altimeter estimates of wind speed and significant wave height and their implications on buoy-altimeter comparisons. Journal of Geophysical Research:Oceans, 93(C3):2285-2302, doi: 10.1029/JC093iC03p02285
    Pleskachevsky A L, Rosenthal W, Lehner S. 2016. Meteo-marine parameters for highly variable environment in coastal regions from satellite radar images. ISPRS Journal of Photogrammetry and Remote Sensing, 119:464-484, doi: 10.1016/j.isprsjprs.2016.02.001
    Schulz-Stellenfleth J, K?nig T, Lehner S. 2007. An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. Journal of Geophysical Research:Oceans, 112(C3):C03019
    Shao Weizeng, Wang Jing, Li Xiaofeng, et al. 2017. An empirical algorithm for wave retrieval from Co-polarization X-band SAR imagery. Remote Sensing, 9(7):711, doi: 10.3390/rs9070711
    Shao Weizeng, Zheng Zhang, Li Xiaofeng, et al. 2016. Ocean wave parameters retrieval from sentinel-1 SAR imagery. Remote Sensing, 8(9):707, doi: 10.3390/rs8090707
    Song Kaishan, Li Lin, Li Shuai, et al. 2012. Hyperspectral retrieval of phycocyanin in potable water sources using genetic algorithm-partial least squares (GA-PLS) modeling. International Journal of Applied Earth Observation and Geoinformation, 18:368-385, doi: 10.1016/j.jag.2012.03.013
    Stopa J E, Mouche A. 2017. Significant wave heights from sentinel-1 SAR:Validation and applications. Journal of Geophysical Research:Oceans, 122(3):1827-1848, doi: 10.1002/2016JC012364
    Wan Yong, Zhang Jie, Meng Junmin, et al. 2015. Exploitable wave energy assessment based on ERA-Interim reanalysis data-a case study in the East China Sea and the South China Sea. Acta Oceanologica Sinica, 34(9):143-155, doi: 10.1007/s13131-015-0641-8
    Wang He, Mouche A, Husson R, et al. 2016. A global distribution of crossing swell from Envisat ASAR Wave Mode data based on swell propagation. In:Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing, China:IEEE, 4657–4660
    Wang He, Zhu Jianhua, Yang Jingsong. 2014. Error Analysis on ESA's envisat ASAR wave mode significant wave height retrievals using triple collocation model. Remote Sensing, 6(12):12217-12233, doi: 10.3390/rs61212217
    Wang He, Zhu Jianhua, Yang Jingsong, et al. 2012. A semiempirical algorithm for SAR wave height retrieval and its validation using Envisat ASAR wave mode data. Acta Oceanologica Sinica, 31(3):59-66, doi: 10.1007/s13131-012-0206-z
  • Relative Articles

  • Cited by

    Periodical cited type(6)

    1. Wengeng Shen, Zongquan Ying, Yiming Zhao, et al. Significant wave height prediction in monsoon regions based on the VMD-CNN-BiLSTM model. Frontiers in Marine Science, 2024, 11 doi:10.3389/fmars.2024.1503552
    2. Xiaochen Wang, Bing Han, Lihua Zhong, et al. Retrieval of Significant Wave Height Under Typhoon Conditions from Gaofen-3 SAR Imagery. Journal of Ocean University of China, 2022, 21(1): 81. doi:10.1007/s11802-022-4711-1
    3. Longyu Huang, Junmin Meng, Chenqing Fan, et al. Shallow Sea Topography Detection from Multi-Source SAR Satellites: A Case Study of Dazhou Island in China. Remote Sensing, 2022, 14(20): 5184. doi:10.3390/rs14205184
    4. Danielle Alves da Silva Rios, Monica Masako Nakamoto, Anna Rafaela Cavalcante Braga, et al. Food coating using vegetable sources: importance and industrial potential, gaps of knowledge, current application, and future trends. Applied Food Research, 2022, 2(1): 100073. doi:10.1016/j.afres.2022.100073
    5. Xiaoyu Zhang, Yongqing Li, Song Gao, et al. Ocean Wave Height Series Prediction with Numerical Long Short-Term Memory. Journal of Marine Science and Engineering, 2021, 9(5): 514. doi:10.3390/jmse9050514
    6. Duo Wang, Xiaochen Wang, Weili Jiao, et al. Influence of Swell Wave on Wind Speed Retrieval Using ENVISAT ASAR Wave Mode Imagery. Journal of Sensors, 2021, 2021(1) doi:10.1155/2021/9986523

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 29.7 %FULLTEXT: 29.7 %META: 69.4 %META: 69.4 %PDF: 0.9 %PDF: 0.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 1.2 %其他: 1.2 %China: 48.0 %China: 48.0 %Egypt: 0.9 %Egypt: 0.9 %India: 0.6 %India: 0.6 %Japan: 0.9 %Japan: 0.9 %Russian Federation: 10.5 %Russian Federation: 10.5 %Thailand: 1.8 %Thailand: 1.8 %United States: 36.0 %United States: 36.0 %其他ChinaEgyptIndiaJapanRussian FederationThailandUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (480) PDF downloads(135) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return