Choi Young-Kwang, Seo Seung-Nam, Choi Jin-Yong, Shi Fengyan, Park Kwang-Soon. Wave prediction in a port using a fully nonlinear Boussinesq wave model[J]. Acta Oceanologica Sinica, 2019, 38(7): 36-47. doi: 10.1007/s13131-019-1456-2
Citation: Choi Young-Kwang, Seo Seung-Nam, Choi Jin-Yong, Shi Fengyan, Park Kwang-Soon. Wave prediction in a port using a fully nonlinear Boussinesq wave model[J]. Acta Oceanologica Sinica, 2019, 38(7): 36-47. doi: 10.1007/s13131-019-1456-2

Wave prediction in a port using a fully nonlinear Boussinesq wave model

doi: 10.1007/s13131-019-1456-2
  • Received Date: 2018-04-05
  • A wave forecasting system using FUNWAVE-TVD which is based on the fully nonlinear Boussinesq equations by Chen (2006) was developed to provide an accurate wave prediction in the Port of Busan, South Korea. This system is linked to the Korea Operational Oceanographic System (KOOS) developed by Park et al. (2015). The computational domain covers a region of 9.6 km×7.0 km with a grid size of 2 m in both directions, which is sufficient to resolve short waves and dominant sea states. The total number of grid points exceeds 16 millions, making the model computational expensive. To provide real-time forecasting, an interpolation method, which is based on pre-calculated results of FUNWAVE-TVD and SWAN forecasting results at the FUNWAVE-TVD offshore boundary, was used. A total of 45 cases were pre-calculated, which took 71 days on 924 computational cores of a Linux cluster system. Wind wave generation and propagation from the deep water were computed using the SWAN in KOOS. SWAN results provided a boundary condition for the FUNWAVE-TVD forecasting system. To verify the model, wave observations were conducted at three locations inside the port in a time period of more than 7 months. A model/model comparison between FUNWAVE-TVD and SWAN was also carried out. It is found that, FUNWAVE-TVD improves the forecasting results significantly compared to SWAN which underestimates wave heights in sheltered areas due to incorrect physical mechanism of wave diffraction, as well as large wave heights caused by wave reflections inside the port.
  • Abadie S M, Harris J C, Grilli S T, et al. 2012. Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands):tsunami source and near field effects. Journal of Geophysical Research, 117(C5):C05030, doi: 10.1029/2011JC007646
    Booij N, Ris R C, Holthuijsen L H. 1999. A third-generation wave model for coastal regions:1. Model description and validation. Journal of Geophysical Research, 104(C4):7649-7666, doi: 10.1029/98JC02622
    Borgman L E. 1984. Directional spectrum estimation for the Sxy gauges. Vicksburg, MS, USA:Waterways Experiment Station, 1-104
    Bouws E, Günther H, Rosenthal W, et al. 1985. Similarity of the wind wave spectrum in finite depth water:1. Spectral form. Journal of Geophysical Research, 90(C1):975-986, doi: 10.1029/JC090iC01p00975
    Chen Qin. 2006. Fully nonlinear Boussinesq-type equations for waves and currents over porous beds. Journal of Engineering Mechanics, 132(2):220-230, doi: 10.1061/(ASCE)0733-9399(2006)132:2(220)
    Chen Qin, Kirby J T, Dalrymple R A, et al. 2003. Boussinesq modeling of longshore currents. Journal of Geophysical Research, 108(C11):3362, doi: 10.1029/2002JC001308
    Cho K H, Choi J Y, Jeong S H, et al. 2013. Development of a skill assessment tool for the Korea operational oceanographic system. Acta Oceanologica Sinica, 32(9):74-81, doi: 10.1007/s13131-013-0354-9
    Choi J, Kirby J T, Yoon S B. 2015. Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions. Coastal Engineering, 101:17-34, doi: 10.1016/j.coastaleng.2015.04.005
    Choi Y K, Seo S N. 2015. Wave transformation using modified FUNWAVE-TVD numerical model. Journal of Korean Society of Coastal and Ocean Engineers, 27(6):406-418, doi: 10.9765/KSCOE.2015.27.6.406
    Erduran K S, Ilic S, Kutija V. 2005. Hybrid finite-volume finite-difference scheme for the solution of Boussinesq equations. International Journal for Numerical Methods in Fluids, 49(11):1213-1232, doi: 10.1002/(ISSN)1097-0363
    Goda Y. 2000. Random Seas and Design of Maritime Structures. 2nd ed. New Jersey:World Scientific, 443
    Guimarães P V, Farina L, Toldo E Jr, et al. 2015. Numerical simulation of extreme wave runup during storm events in Tramandaí Beach, Rio Grande do Sul, Brazil. Coastal Engineering, 95:171-180, doi: 10.1016/j.coastaleng.2014.10.008
    Kennedy A B, Chen Qin, Kirby J T, et al. 2000. Boussinesq modeling of wave transformation, breaking, and runup. I:1D. Journal of Waterway, Port, Coastal, and Ocean Engineering, 126(1):39-47, doi: 10.1061/(ASCE)0733-950X(2000)126:1(39)
    Kirby J T, Shi Fengyan, Tehranirad B, et al. 2013. Dispersive tsunami waves in the ocean:model equations and sensitivity to dispersion and Coriolis effects. Ocean Modelling, 62:39-55, doi: 10.1016/j.ocemod.2012.11.009
    Kirby J T, Wei Ge, Chen Qin, et al. 1998. FUNWAVE 1.0:fully nonlinear Boussinesq wave model Documentation and user's manual. CACR-98-06, Newark, NJ, USA:University of Delaware
    Oh S H, Jeong W M. 2013. Characteristics of high waves observed at multiple stations along the east coast of Korea. Natural Hazards and Earth System Sciences, 13(12):3503-3514, doi: 10.5194/nhess-13-3503-2013
    Park K S, Heo K Y, Jun K, et al. 2015. Development of the operational oceanographic system of Korea. Ocean Science Journal, 50(2):353-369, doi: 10.1007/s12601-015-0033-1
    Rogers W E, Kaihatu J M, Hsu L, et al. 2007. Forecasting and hindcasting waves with the SWAN model in the Southern California Bight. Coastal Engineering, 54(1):1-15, doi: 10.1016/j.coastaleng.2006.06.011
    Rusu L, Pilar P, Soares C G. 2008. Hindcast of the wave conditions along the west Iberian coast. Coastal Engineering, 55(11):906-919, doi: 10.1016/j.coastaleng.2008.02.029
    Sandhya K G, Balakrishnan Nair T M, Bhaskaran P K, et al. 2014. Wave forecasting system for operational use and its validation at coastal Puducherry, east coast of India. Ocean Engineering, 80:64-72, doi: 10.1016/j.oceaneng.2014.01.009
    Seo S N. 2008. Digital 30sec gridded bathymetric data of Korea marginal seas-KorBathy30s. Journal of Korean Society of Coastal and Ocean Engineers, 20(1):110-120
    Shi Fengyan, Dalrymple R A, Kirby J T, et al. 2001. A fully nonlinear Boussinesq model in generalized curvilinear coordinates. Coastal Engineering, 42(4):337-358, doi: 10.1016/S0378-3839(00)00067-3
    Shi Fengyan, Kirby J T, Dalrymple R A, et al. 2003. Wave simulations in Ponce de Leon inlet using Boussinesq model. Journal of Waterway, Port, Coastal, and Ocean Engineering, 129(3):124-135, doi: 10.1061/(ASCE)0733-950X(2003)129:3(124)
    Shi Fengyan, Kirby J T, Harris J C, et al. 2012. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 43-44:36-51, doi: 10.1016/j.ocemod.2011.12.004
    Shi Fengyan, Malej M, Smith J M, et al. 2018. Breaking of ship bores in a Boussinesq-type ship-wake model. Coastal Engineering, 132:1-12, doi: 10.1016/j.coastaleng.2017.11.002
    Skamarock W C, Klemp J B, Dudhia J, et al. 2008. A description of the advanced research WRF version 3. NCAR/TN-475+STR, Boulder:National Center for Atmospheric Research
    The SWAN Team. 2017. SWAN implementation manual. SWAN Cycle Ⅲ version 41.20A. The Netherlands:Delft University of Technology
    WAMDI Group. 1988. The WAM Model-A third generation ocean wave prediction model. Journal of Physical Oceanography, 18(12):1775-1810, doi: 10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2
    Tolman H L. 1997. User manual and system documentation of WAVEWATCH-Ⅲ version 1.15. NOAA/NWS/NCEP/OMB Technical Note 151, 97
    Wei Ge, Kirby J T, Grilli S T, et al. 1995. A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. Journal of Fluid Mechanics, 294:71-92, doi: 10.1017/S0022112095002813
    Wei Ge, Kirby J T, Sinha A. 1999. Generation of waves in Boussinesq models using a source function method. Coastal Engineering, 36(4):271-299, doi: 10.1016/S0378-3839(99)00009-5
    Willmott C J. 1981. On the validation of models. Physical Geography, 2(2):184-194, doi: 10.1080/02723646.1981.10642213
    Yamamoto S, Daiguji H. 1993. Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations. Computers & Fluids, 22(2-3):259-270
    Yoo J, Lee D Y, Ha T M, et al. 2010. Characteristics of abnormal large waves measured from coastal videos. Natural Hazards and Earth System Sciences, 10(4):947-956, doi: 10.5194/nhess-10-947-2010
    Yoon S B, Park W K, Choi J. 2014. Observation of rip current velocity at an accidental event by using video image analysis. Journal of Coastal Research, (72):16-21
    Zhou J G, Causon D M, Mingham C G, et al. 2001. The surface gradient method for the treatment of source terms in the shallow-water equations. Journal of Computational Physics, 168(1):1-25, doi: 10.1006/jcph.2000.6670
  • Relative Articles

  • Cited by

    Periodical cited type(12)

    1. M. Abul Kawser, M. Ali Akbar, M. Ashrafuzzaman Khan, et al. Exact soliton solutions and the significance of time-dependent coefficients in the Boussinesq equation: theory and application in mathematical physics. Scientific Reports, 2024, 14(1) doi:10.1038/s41598-023-50782-1
    2. Junliang Gao, Linhui Hou, Yingyi Liu, et al. Influences of bragg reflection on harbor resonance triggered by irregular wave groups. Ocean Engineering, 2024, 305: 117941. doi:10.1016/j.oceaneng.2024.117941
    3. Quan Trong Nguyen, Miaohua Mao, Meng Xia. Numerical Modeling of Nearshore Wave Transformation and Breaking Processes in the Yellow River Delta with FUNWAVE-TVD Wave Model. Journal of Marine Science and Engineering, 2023, 11(7): 1380. doi:10.3390/jmse11071380
    4. Mingyu Yan, Zhenjun Zheng, Zhongbin Sun, et al. Numerical evaluation of the tension mooring effects on the hydrodynamic response of moored ships under harbor oscillations. Ocean Engineering, 2023, 288: 116127. doi:10.1016/j.oceaneng.2023.116127
    5. Cui Xie, Xiudong Liu, Tenghao Man, et al. PWPNet: A Deep Learning Framework for Real-Time Prediction of Significant Wave Height Distribution in a Port. Journal of Marine Science and Engineering, 2022, 10(10): 1375. doi:10.3390/jmse10101375
    6. Zhenjun Zheng, Xiaozhou Ma, Xuezhi Huang, et al. Wave forecasting within a port using WAVEWATCH III and artificial neural networks. Ocean Engineering, 2022, 255: 111475. doi:10.1016/j.oceaneng.2022.111475
    7. Guohai Dong, Mingyu Yan, Zhenjun Zheng, et al. Experimental investigation on the hydrodynamic response of a moored ship to low-frequency harbor oscillations. Ocean Engineering, 2022, 262: 112261. doi:10.1016/j.oceaneng.2022.112261
    8. Jun Zhu, Fengyan Shi, Feng Cai, et al. Influences of beach berm height on beach response to storms: A numerical study. Applied Ocean Research, 2022, 121: 103090. doi:10.1016/j.apor.2022.103090
    9. Reza Salatin, Qin Chen, A. Spicer Bak, et al. Effects of Wave Coherence on Longshore Variability of Nearshore Wave Processes. Journal of Geophysical Research: Oceans, 2021, 126(11) doi:10.1029/2021JC017641
    10. Chang Liu, Yaprak Onat, Yan Jia, et al. Modeling nearshore dynamics of extreme storms in complex environments of Connecticut. Coastal Engineering, 2021, 168: 103950. doi:10.1016/j.coastaleng.2021.103950
    11. Zhenjun Zheng, Xiaozhou Ma, Yuxiang Ma, et al. Wave estimation within a port using a fully nonlinear Boussinesq wave model and artificial neural networks. Ocean Engineering, 2020, 216: 108073. doi:10.1016/j.oceaneng.2020.108073
    12. Mosbeh R. Kaloop, Deepak Kumar, Fawzi Zarzoura, et al. A wavelet - Particle swarm optimization - Extreme learning machine hybrid modeling for significant wave height prediction. Ocean Engineering, 2020, 213: 107777. doi:10.1016/j.oceaneng.2020.107777

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.6 %FULLTEXT: 27.6 %META: 67.9 %META: 67.9 %PDF: 4.5 %PDF: 4.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.6 %其他: 2.6 %Chile: 0.9 %Chile: 0.9 %China: 29.6 %China: 29.6 %Greece: 0.6 %Greece: 0.6 %Hong Kong, China: 2.1 %Hong Kong, China: 2.1 %India: 1.5 %India: 1.5 %Indonesia: 0.9 %Indonesia: 0.9 %Japan: 2.1 %Japan: 2.1 %Korea Republic of: 2.8 %Korea Republic of: 2.8 %Portugal: 0.6 %Portugal: 0.6 %Russian Federation: 9.6 %Russian Federation: 9.6 %Spain: 0.6 %Spain: 0.6 %Taiwan, China: 6.0 %Taiwan, China: 6.0 %Turkey: 0.6 %Turkey: 0.6 %United Kingdom: 0.6 %United Kingdom: 0.6 %United States: 38.1 %United States: 38.1 %Viet Nam: 0.6 %Viet Nam: 0.6 %其他ChileChinaGreeceHong Kong, ChinaIndiaIndonesiaJapanKorea Republic ofPortugalRussian FederationSpainTaiwan, ChinaTurkeyUnited KingdomUnited StatesViet Nam

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (680) PDF downloads(380) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return