ZHANG Baole, CUI Jifeng, CHEN Xiaogang, ZHANG Wenyu. The third-order asymptotic solutions in the Lagrangian description for interfacial internal waves in a three layer fluid system[J]. Acta Oceanologica Sinica, 2019, 38(7): 1-13. doi: 10.1007/s13131-019-1453-5
Citation: ZHANG Baole, CUI Jifeng, CHEN Xiaogang, ZHANG Wenyu. The third-order asymptotic solutions in the Lagrangian description for interfacial internal waves in a three layer fluid system[J]. Acta Oceanologica Sinica, 2019, 38(7): 1-13. doi: 10.1007/s13131-019-1453-5

The third-order asymptotic solutions in the Lagrangian description for interfacial internal waves in a three layer fluid system

doi: 10.1007/s13131-019-1453-5
  • Received Date: 2018-07-01
  • In this paper, we discuss the interfacial internal waves with a rigid boundary in a three-layer fluid system, where the density of the upper layer fluid is smaller than that of the lower layer. With the Lagrangian matching conditions at the interfaces, the first-order solutions, the second-order solutions and the third-order asymptotic solutions for the interfacial internal waves are obtained in the Lagrangian description using the perturbation method, and the mass transport velocity, the wave frequency, the mean level and the particle trajectory are also given. The results show that the discontinuities across the interfaces appear for the mass transport velocity, wave frequency and mean level, but we find that these discontinuities may disappear if the water depth ratio and the density ratio of the three layer fluids satisfy certain conditions.
  • loading
  • Bingham B S, Walls J M, Eustice R M. 2011. Development of a flexible command and control software architecture for marine robotic applications. Marine Technology Society Journal, 45(3):25-36, doi: 10.4031/MTSJ.45.3.4
    Chen Xiaogang, Guo Zhiping, Song Jinbao, et al. 2009. Third-order stokes wave solutions for interfacial internal waves in a three-layer density-stratified fluid. Chinese Physics B, 18(5):1906-1916, doi: 10.1088/1674-1056/18/5/031
    Chen Y Y, Hsu H C. 2009. A third-order asymptotic solution of nonlinear standing water waves in lagrangian coordinates. Chinese Physics B, 18(3):861-871, doi: 10.1088/1674-1056/18/3/004
    Constantin A. 2006. The trajectories of particles in stokes waves. Inventiones Mathematicae, 166(3):523-535, doi: 10.1007/s00222-006-0002-5
    Constantin A, Ehrnström M, Villari G. 2008. Particle trajectories in linear deep-water waves. Nonlinear Analysis Real World Applications, 9(4):1336-1344, doi: 10.1016/j.nonrwa.2007.03.003
    Constantin A, Escher J. 2007. Particle trajectories in solitary water waves. Bulletin of the American Mathematical Society, 44(3):423-431, doi: 10.1090/S0273-0979-07-01159-7
    Constantin A, Strauss W. 2010. Pressure beneath a stokes wave. Communications on Pure and Applied Mathematics, 63(4):533-557
    Constantin A, Villari G. 2008. Particle trajectories in linear water waves. Journal of Mathematical Fluid Mechanics, 10(1):1-18, doi: 10.1007/s00021-005-0214-2
    Davis R E, Acrivos A. 1967. Solitary internal waves in deep water. Journal of Fluid Mechanics, 29(3):593-607, doi: 10.1017/S0022112067001041
    Ehrnström M, Villari G. 2008. Linear water waves with vorticity:rotational features and particle paths. Journal of Differential Equations, 244(8):1888-1909, doi: 10.1016/j.jde.2008.01.012
    Fenton J D. 1985. A fifth-order stokes theory for steady waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 111(2):216-234, doi: 10.1061/(ASCE)0733-950X(1985)111:2(216)
    Harrop-Griffiths B, Ifrim M, Tataru D. 2017. Finite depth gravity water waves in holomorphic coordinates. Annals of PDE, 3(1):4, doi: 10.1007/s40818-017-0022-z
    Helfrich K R, Melville W K. 2006. Long nonlinear internal waves. Annual Review of Fluid Mechanics, 38(1):395-425, doi: 10.1146/annurev.fluid.38.050304.092129
    Hsu H C, Chen Y Y, Li M S, et al. 2009. Interactions of nonlinear gravity waves and uniform current in lagrangian system. Acta Oceanologica Sinica, 28(1):89-98
    Hsu H C, Chen Y Y, Hsu J R, et al. 2009. Nonlinear water waves on uniform current in Lagrangian coordinates. Journal of Nonlinear Mathematical Physics, 16(1):47-61, doi: 10.1142/S1402925109000054
    Hsu H C, Francius M, Montalvo P, et al. 2016. Gravity-capillary waves in finite depth on flows of constant vorticity. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 472(2195):1-19, doi: 10.1098/rspa.2016.0363
    Hsu H C, Tsai C C. 2016. Lagrangian approach to interfacial water waves with free surface. Applied Ocean Research, 59:616-637, doi: 10.1016/j.apor.2016.08.001
    Hunt J N. 1961. Interfacial waves of finite amplitude. La Houille Blanche, 4(4):515-531
    Kunkee D B, Gasiewski A J. 1997. Simulation of passive microwave wind direction signatures over the ocean using an asymmetric-wave geometrical optics model. Radio Science, 32(1):59-78, doi: 10.1029/96RS02434
    Lennert-Cody C E, Franks P J S. 1999. Plankton patchiness in high-frequency internal waves. Marine Ecology Progress Series, 186:59-66, doi: 10.3354/meps186059
    Liu Chimin. 2006. Second-order random internal and surface waves in a two-fluid system. Geophysical Research Letters, 33(6):L06610
    Longuet-Higgins M S. 1988. Lagrangian moments and mass transport in stokes waves. Journal of Fluid Mechanics, 186:321-336, doi: 10.1017/S0022112088000163
    Song Jinbao, Liu Yongjun. 2009. Influence of the earth rotation on the interfacial wave solutions and wave-induced tangential stress in a two-layer fluid system. Acta Oceanologica Sinica, 28(2):115-120
    Stokes G G. 1847. On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society, 8:441-455
    Thorpe S A. 1968. On standing internal gravity waves of finite amplitude. Journal of Fluid Mechanics, 32(3):489-528, doi: 10.1017/S002211206800087X
    Tsuji Y, Nagata Y. 1973. Stokes' expansion of internal deep water waves to the fifth order. Journal of the Oceanographical Society of Japan, 29(2):61-69
    Umeyama M. 1998. Second-order internal wave theory by a perturbation method. Memoirs of the Faculty of Engineering, 48:137-145
    Umeyama M. 2000. Third-order stokes interfacial waves for a density stratified two-layer fluid. Memoirs of Graduate School of Eng, Tokyo Metropolitan Univ, 50:120-136
    Umeyama M, Matsuki S. 2011. Measurements of velocity and trajectory of water particle for internal waves in two density layers. Geophysical Research Letters, 38(3):L03612
    Yang T C. 2014. Acoustic mode coupling induced by nonlinear internal waves:evaluation of the mode coupling matrices and applications. The Journal of the Acoustical Society of America, 135(2):610-625, doi: 10.1121/1.4861253
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (749) PDF downloads(284) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return