Guan Yili, Shi Xuefa, Yan Quanshu, Wei Xun, Zhang Yan, Xia Xiaoping, Zhou Haoda. Implications of the melting depth and temperature of the Atlantic mid-ocean ridge basalts[J]. Acta Oceanologica Sinica, 2019, 38(12): 35-42. doi: 10.1007/s13131-019-1363-0
Citation: Guan Yili, Shi Xuefa, Yan Quanshu, Wei Xun, Zhang Yan, Xia Xiaoping, Zhou Haoda. Implications of the melting depth and temperature of the Atlantic mid-ocean ridge basalts[J]. Acta Oceanologica Sinica, 2019, 38(12): 35-42. doi: 10.1007/s13131-019-1363-0

Implications of the melting depth and temperature of the Atlantic mid-ocean ridge basalts

doi: 10.1007/s13131-019-1363-0
  • Received Date: 2018-07-08
  • Mid-ocean ridge basalts (MORBs) are characterized by large variations in trace element compositions and isotopic ratios, which are difficult to be interpreted solely by using magmatic process such as partial melting of a peridotitic mantle and subsequently fractional crystallization. Geochemical diversity of MORBs have been attributed to large-scale heterogeneity within the underlying mantle, and the heterogeneity might have been caused by addition of recycled crustal component, subcontinental lithosphere, metasomatized lithosphere and outer core contribution. In this study, we investigated the MORBs along the Mid-Atlantic Ridge (MAR) by estimating the temperature and pressure of partial melting, and comprehensively comparing trace element and isotope ratios. The data for MORBs from areas close to mantle plumes show large variations. Mantle plumes can affect mid-oceanic ridges 1 400 km away, but plume effects did not cover all of the ridge segments, and those segments without plume effects did not have any abnormalities in temperature, trace element or isotope ratios. We ascribed the above phenomena to result from the shapes of the plume flow, which we categorized as “pipe-like channels” and “pancake-like channels”. The “pancake-like channels” plumes affected the ambient mantle nondirectionally, but the range of the mantle affected by the “pipe-like channels” plumes were selective. Element ratios of MORBs reveal that the mantle source of the MORBs along the MAR is highly heterogeneous. We suggest that most of source heterogeneities of the MORBs may be due to the presence of subducted slab and delaminated lower crust in the source. In addition, the plume that carried materials from the core-mantle boundary may affect some of the segments.
  • loading
  • Agranier A, Blichert-Toft J, Graham D, et al. 2005. The spectra of isotopic heterogeneities along the mid-Atlantic Ridge. Earth and Planetary Science Letters, 238(1-2):96-109
    Albarede F. 1992. How deep do common basaltic magmas form and differentiate?. Journal of Geophysical Research:Solid Earth, 97(B7):10997-11009, doi: 10.1029/91JB02927
    Andres M, Blichert-Toft J, Schilling J G. 2004. Nature of the depleted upper mantle beneath the Atlantic:evidence from Hf isotopes in normal mid-ocean ridge basalts from 79°N to 55°S. Earth and Planetary Science Letters, 225(1-2):89-103
    Arevalo Jr R, McDonough W F. 2010. Chemical variations and regional diversity observed in MORB. Chemical Geology, 271(1-2):70-85
    Bougault H, Treuil M. 1980. Mid-Atlantic Ridge:zero-age geochemical variations between Azores and 22°N. Nature, 286(5770):209-212, doi: 10.1038/286209a0
    Brenan J M, Shaw H F, Ryerson F J. 1995. Experimental evidence for the origin of lead enrichment in convergent-margin magmas. Nature, 378(6552):54-56, doi: 10.1038/378054a0
    Brey G P, Köhler T. 1990. Geothermobarometry in four-phase Lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology, 31(6):1353-1378
    Burke K. 2011. Plate tectonics, the Wilson Cycle, and mantle plumes:geodynamics from the top. Annual Review of Earth and Planetary Sciences, 39:1-29, doi: 10.1146/annurev-earth-040809-152521
    Class C, le Roex A. 2011. South Atlantic DUPAL anomaly-Dynamic and compositional evidence against a recent shallow origin. Earth and Planetary Science Letters, 305(1-2):92-102
    Courtillot V, Davaille A, Besse J, et al. 2003. Three distinct types of hotspots in the Earth's mantle. Earth and Planetary Science Letters, 205(3-4):295-308
    Dalton C A, Langmuir C H, Gale A. 2014. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science, 344(6179):80-83, doi: 10.1126/science.1249466
    Dixon J E, Leist L, Langmuir C, et al. 2002. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature, 420(6914):385-389, doi: 10.1038/nature01215
    Dosso L, Bougault H, Langmuir C, et al. 1999. The age and distribution of mantle heterogeneity along the Mid-Atlantic Ridge (31-41°N). Earth and Planetary Science Letters, 170(3):269-286, doi: 10.1016/S0012-821X(99)00109-0
    Escrig S, Capmas F, Dupré B, et al. 2004. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature, 431(7004):59-63, doi: 10.1038/nature02904
    Escrig S, Schiano P, Schilling J G, et al. 2005. Rhenium-osmium isotope systematics in MORB from the Southern Mid-Atlantic Ridge (40°-50°S). Earth and Planetary Science Letters, 235(3-4):528-548
    Fontignie D, Schilling J G. 1996. Mantle heterogeneities beneath the South Atlantic:a Nd-Sr-Pb isotope study along the Mid-Atlantic Ridge (3°S-46°S). Earth and Planetary Science Letters, 142(1-2):209-221
    Gale A, Dalton C A, Langmuir C H, et al. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3):489-518, doi: 10.1029/2012GC004334
    Haase K M, Devey C W, Mertz D F, et al. 1996. Geochemistry of lavas from Mohns Ridge, Norwegian-Greenland Sea:implications for melting conditions and magma sources near Jan Mayen. Contributions to Mineralogy and Petrology, 123(3):223-237, doi: 10.1007/s004100050152
    Haase K M, Devey C W, Wieneke M. 2003. Magmatic processes and mantle heterogeneity beneath the slow-spreading northern Kolbeinsey Ridge segment, North Atlantic. Contributions to Mineralogy and Petrology, 144(4):428-448, doi: 10.1007/s00410-002-0408-z
    Hart S R, Kurz M D, Wang Z. 2008. Scale length of mantle heterogeneities:constraints from helium diffusion. Earth and Planetary Science Letters, 269(3-4):508-517
    Hoernle K, Hauff F, Kokfelt T F, et al. 2011. On-and off-axis chemical heterogeneities along the South Atlantic Mid-Ocean-Ridge (5-11°S):Shallow or deep recycling of ocean crust and/or intraplate volcanism?. Earth and Planetary Science Letters, 306:86-97, doi: 10.1016/j.epsl.2011.03.032
    Hofmann A W. 1997. Mantle geochemistry:the message from oceanic volcanism. Nature, 385(6613):219-229, doi: 10.1038/385219a0
    Hofmann A W. 2003. Sampling mantle heterogeneity through oceanic basalts:isotopes and trace elements. In:Carlson R W, Holland H, Turekian K K, eds. Treatise on Geochemistry. Vol 2. Oxford:Elsevier, 61-101
    Hofmann A W, Jochum K P, Seufert M, et al. 1986. Nb and Pb in oceanic basalts:new constraints on mantle evolution. Earth and Planetary Science Letters, 79(1-2):33-45
    Huang H, Niu Y L, Zhao Z D, et al. 2011. On the enigma of Nb-Ta and Zr-Hf fractionation-a critical review. Journal of Earth Science, 22(1):52-66, doi: 10.1007/s12583-011-0157-x
    Ito G, Lin J, Graham D. 2003. Observational and theoretical studies of the dynamics of mantle plume-mid-ocean ridge interaction. Reviews of Geophysics, 41(4):1017, doi: 10.1029/2002RG000117
    Ito G, van Keken P E. 2007. Hot spots and melting anomalies. Treatise on Geophysics, 7:371-435, doi: 10.1016/B978-044452748-6/00123-1
    Kelley K A, Kingsley R, Schilling J G. 2013. Composition of plume-influenced mid-ocean ridge lavas and glasses from the Mid-Atlantic Ridge, East Pacific Rise, Galápagos Spreading Center, and Gulf of Aden. Geochemistry, Geophysics, Geosystems, 14(1):223-242, doi: 10.1002/ggge.20049
    Kelley K A, Plank T, Farr L, et al. 2005. Subduction cycling of U, Th, and Pb. Earth and Planetary Science Letters, 234(1-2):369-383
    Kempton P D, Fitton J G, Saunders A D, et al. 2000. The Iceland plume in space and time:a Sr-Nd-Pb-Hf study of the North Atlantic rifted margin. Earth and Planetary Science Letters, 177(1-2):255-271
    Kincaid C, Schilling J G, Gable C. 1996. The dynamics of off-axis plume-ridge interaction in the uppermost mantle. Earth and Planetary Science Letters, 137(1-4):29-43
    Konter J G, Becker T W. 2012. Shallow lithospheric contribution to mantle plumes revealed by integrating seismic and geochemical data. Geochemistry, Geophysics, Geosystems, 13(2):Q02004, doi: 10.1029/2011GC003923
    Le Roux P J, Le Roex A P, Schilling J G, et al. 2002. Mantle heterogeneity beneath the southern Mid-Atlantic Ridge:trace element evidence for contamination of ambient asthenospheric mantle. Earth and Planetary Science Letters, 203(1):479-498, doi: 10.1016/S0012-821X(02)00832-4
    Le Roux V, Lee C T A, Turner S J. 2010. Zn/Fe systematics in mafic and ultramafic systems:Implications for detecting major element heterogeneities in the Earth's mantle. Geochimica et Cosmochimica Acta, 74(9):2779-2796, doi: 10.1016/j.gca.2010.02.004
    Lee C T A, Leeman W P, Canil D, et al. 2005. Similar V/Sc systematics in MORB and arc basalts:implications for the oxygen fugacities of their mantle source regions. Journal of Petrology, 46(11):2313-2336, doi: 10.1093/petrology/egi056
    Lee C T A, Luffi P, Le Roux V, et al. 2010. The redox state of arc mantle using Zn/Fe systematics. Nature, 468(7324):681-685, doi: 10.1038/nature09617
    Lee C T A, Luffi P, Plank T, et al. 2009. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth and Planetary Science Letters, 279(1-2):20-33
    Lustrino M. 2005. How the delamination and detachment of lower crust can influence basaltic magmatism. Earth-Science Reviews, 72(1-2):21-38
    Miller D M, Goldstein S L, Langmuir C H. 1994. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature, 368(6471):514-520, doi: 10.1038/368514a0
    Mittelstaedt E, Ito G, van Hunen J. 2011. Repeat ridge jumps associated with plume-ridge interaction, melt transport, and ridge migration. Journal of Geophysical Research:Solid Earth, 116(B1):B01102, doi: 10.1029/2010JB007504
    Montelli R, Nolet G, Dahlen F A, et al. 2006. A catalogue of deep mantle plumes:new results from finite-frequency tomography. Geochemistry, Geophysics, Geosystems, 7(11):Q11007, doi: 10.1029/2006GC001248
    Morgan W J. 1972. Plate motions and deep mantle convection. In:Shagam R, Hargraves R B, Morgan W J, et al, eds. Studies in Earth and Space Sciences. Boulder, Colo:Geological Society of America, 132:7-22
    Müller R D, Roest W R, Royer J Y. 1998. Asymmetric sea-floor spreading caused by ridge-plume interactions. Nature, 396(6710):455-459, doi: 10.1038/24850
    Parnell-Turner R, White N, Henstock T, et al. 2014. A continuous 55-million-year record of transient mantle plume activity beneath Iceland. Nature Geoscience, 7(12):914-919, doi: 10.1038/ngeo2281
    Paulick H, Münker C, Schuth S. 2010. The influence of small-scale mantle heterogeneities on Mid-Ocean Ridge volcanism:evidence from the southern Mid-Atlantic Ridge (7°30'S to 11°30'S) and Ascension Island. Earth and Planetary Science Letters, 296(3-4):299-310
    Pfänder J A, Münker C, Stracke A, et al. 2007. Nb/Ta and Zr/Hf in ocean island basalts-Implications for crust-mantle differentiation and the fate of Niobium. Earth and Planetary Science Letters, 254(1-2):158-172
    Pilet S, Baker M B, Stolper E M. 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science, 320(5878):916-919, doi: 10.1126/science.1156563
    Putirka K. 1999. Melting depths and mantle heterogeneity beneath Hawaii and the East Pacific Rise:constraints from Na/Ti and rare earth element ratios. Journal of Geophysical Research:Solid Earth, 104(B2):2817-2829, doi: 10.1029/1998JB900048
    Putirka K D. 2005. Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts:evidence for thermally driven mantle plumes. Geochemistry, Geophysics, Geosystems, 6(5):Q05L08, doi: 10.1029/2005GC000915
    Putirka K D. 2005. Igneous thermometers and barometers based on plagioclase + liquid equilibria:tests of some existing models and new calibrations. American Mineralogist, 90(2-3):336-346
    Putirka K, Johnson M, Kinzler R, et al. 1996. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0-30 kbar. Contributions to Mineralogy and Petrology, 123(1):92-108, doi: 10.1007/s004100050145
    Putirka K D, Mikaelian H, Ryerson F, et al. 2003. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88(10):1542-1554, doi: 10.2138/am-2003-1017
    Putirka K D, Perfit M, Ryerson F J, et al. 2007. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chemical Geology, 241(3-4):177-206
    Ribe N M. 1996. The dynamics of plume-ridge interaction:2. Off-ridge plumes. Journal of Geophysical Research:Solid Earth, 101(B7):16195-16204, doi: 10.1029/96JB01187
    Ribe N M, Christensen U R, Theißing J. 1995. The dynamics of plume-ridge interaction, 1:Ridge-centered plumes. Earth and Planetary Science Letters, 134(1-2):155-168
    Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust:a lower crustal perspective. Reviews of Geophysics, 33(3):267-309, doi: 10.1029/95RG01302
    Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5):Q05B07
    Schiano P, Birck J L, Allègre C J. 1997. Osmium-strontium-neodymium-lead isotopic covariations in mid-ocean ridge basalt glasses and the heterogeneity of the upper mantle. Earth and Planetary Science Letters, 150(3-4):363-379
    Schilling J G. 1973. Iceland mantle plume:geochemical study of reykjanes ridge. Nature, 242(5400):565-571, doi: 10.1038/242565a0
    Schilling J G. 1985. Upper mantle heterogeneities and dynamics. Nature, 314(6006):62-67, doi: 10.1038/314062a0
    Schilling J G, Thompson G, Kingsley R, et al. 1985. Hotspot-migrating ridge interaction in the South Atlantic. Nature, 313(5999):187-191, doi: 10.1038/313187a0
    Schmidt A, Weyer S, John T, et al. 2009. HFSE systematics of rutile-bearing eclogites:new insights into subduction zone processes and implications for the earth's HFSE budget. Geochimica et Cosmochimica Acta, 73(2):455-468, doi: 10.1016/j.gca.2008.10.028
    Schubert G, Masters G, Olson P, et al. 2004. Superplumes or plume clusters?. Physics of the Earth and Planetary Interiors, 146(1-2):147-162
    Simmons N A, Forte A M, Grand S P. 2007. Thermochemical structure and dynamics of the African superplume. Geophysical Research Letters, 34(2):L02301, doi: 10.1029/2006GL028009
    Sobolev A V, Hofmann A W, Kuzmin D V, et al. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823):412-417, doi:10.1126/science. 1138113
    Stracke A. 2012. Earth's heterogeneous mantle:a product of convection-driven interaction between crust and mantle. Chemical Geology, 330-331:274-299
    Stracke A, Bourdon B. 2009. The importance of melt extraction for tracing mantle heterogeneity. Geochimica et Cosmochimica Acta, 73(1):218-238, doi: 10.1016/j.gca.2008.10.015
    Sun W D, Hu Y H, Kamenetsky V S, et al. 2008. Constancy of Nb/U in the mantle revisited. Geochimica et Cosmochimica Acta, 72(14):3542-3549, doi: 10.1016/j.gca.2008.04.029
    Torsvik T H, van der Voo R, Doubrovine P V, et al. 2014. Deep mantle structure as a reference frame for movements in and on the Earth. Proceedings of the National Academy of Sciences of the United States of America, 111(24):8735-8740, doi: 10.1073/pnas.1318135111
    van Keken P E, Hauri E H, Ballentine C J. 2002. Mantle mixing:the generation, preservation, and destruction of chemical heterogeneity. Annual Review of Earth and Planetary Sciences, 30:493-525, doi: 10.1146/annurev.earth.30.091201.141236
    Wade J, Wood B J. 2001. The Earth's "missing" niobium may be in the core. Nature, 409(6816):75-78, doi: 10.1038/35051064
    White R S. 1997. Rift-plume interaction in the North Atlantic. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 355(1723):319-339, doi: 10.1098/rsta.1997.0011
    White W M, Schilling J G. 1978. The nature and origin of geochemical variation in Mid-Atlantic Ridge basalts from the central North Atlantic. Geochimica et Cosmochimica Acta, 42(10):1501-1516, doi: 10.1016/0016-7037(78)90021-2
    Whittaker J M, Afonso J C, Masterton S, et al. 2015. Long-term interaction between mid-ocean ridges and mantle plumes. Nature Geoscience, 8(6):479-483, doi: 10.1038/ngeo2437
    Willbold M, Stracke A. 2006. Trace element composition of mantle end-members:implications for recycling of oceanic and upper and lower continental crust. Geochemistry, Geophysics, Geosystems, 7(4):Q04004, doi: 10.1029/2005GC001005
    Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1-2):53-72
    Yang A Y, Zhao T P, Zhou M F, et al. 2017. Isotopically enriched N-MORB:a new geochemical signature of off-axis plume-ridge interaction-a case study at 50°28'E, Southwest Indian Ridge. Journal of Geophysical Research:Solid Earth, 122(1):191-213, doi: 10.1002/2016JB013284
    Zhang H T, Yang Y M, Yan Q S, et al. 2016. Ca/Al of plagioclase-hosted melt inclusions as an indicator for post-entrapment processes at mid-ocean ridges?. Geologica Acta, 14(1):1-12
    Zindler A, Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14:493-571, doi: 10.1146/annurev.ea.14.050186.002425
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (405) PDF downloads(161) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return