Xia Peng, Meng Xianwei, Li Zhen, Zhi Pengyao, Zhao Mengwei, Wang Enkang. Late Holocene mangrove development and response to sea level change in the northwestern South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(11): 111-120. doi: 10.1007/s13131-019-1359-9
Citation: Xia Peng, Meng Xianwei, Li Zhen, Zhi Pengyao, Zhao Mengwei, Wang Enkang. Late Holocene mangrove development and response to sea level change in the northwestern South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(11): 111-120. doi: 10.1007/s13131-019-1359-9

Late Holocene mangrove development and response to sea level change in the northwestern South China Sea

doi: 10.1007/s13131-019-1359-9
  • Received Date: 2018-05-03
  • Mangroves, widely distributed along the coasts of tropical China, are influenced by Asia monsoon, relative sea level change and enhanced human activity. To predict the impacts of future climate change on mangrove ecosystems, it can be understood by reconstructing past mangrove dynamics using proxies preserved in coastal sediments. In this study, we quantitatively partitioned buried organic matter (OM) sources, collected from a vulnerable mangrove swamp in the Qinzhou Bay of northwestern South China Sea, using a ternary end-member mixing model of δ13C and C:N values. Mangrove-derived OM (MOM) contribution was used as a tracer for mangrove development since 2.34 cal ka BP. This information, together with paleoclimate records (i.e., speleothem δ18O values, sea level change, grain size parameters) and human activity, was used to divide mangrove development into three stages during the late Holocene: relative flourish (2.34–1.13 cal ka BP), relative degradation (1.13–0.15 cal ka BP) and further degradation (0.15–0 cal ka BP). Before 1.13 cal ka BP, mangroves flourished with a high MOM contribution ((88.9±10.6)%), corresponding to stable and high sea level under a warm and humid climate. After 1.13 cal ka BP, rapid fall in relative sea level coupled with the strengthening of the Asian winter monsoon, resulted in mangrove degradation and MOM reduction ((62.4±18.9)%). Compared with air temperature and precipitation, the relative sea level fall was the main controlling factor in mangrove development before entering the Anthropocene (the time of the Industrial Revolution). After ~150 cal a BP, reclamation of mangrove swamps to shrimp ponds is the main factor causing mangrove degradation and MOM reduction.
  • loading
  • Alongi D M. 2008. Mangrove forests:resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76(1):1-13, doi: 10.1016/j.ecss.2007.08.024
    Andrews J E, Greenaway A M, Dennis P F. 1998. Combined carbon isotope and C/N ratios as indicators of source and fate of organic matter in a poorly flushed, tropical estuary:hunts bay, Kingston Harbour, Jamaica. Estuarine, Coastal and Shelf Science, 46(5):743-756, doi: 10.1006/ecss.1997.0305
    Beaudoin Y. 1980. A modification of Burger's phi-normal approximation for the moments of grain-size data. Sedimentology, 27(4):455-459, doi: 10.1111/j.1365-3091.1980.tb01194.x
    Bouillon S, Connolly R M, Lee S Y. 2008. Organic matter exchange and cycling in mangrove ecosystems:recent insights from stable isotope studies. Journal of Sea Research, 59(1-2):44-58
    Bouillon S, Mohan P C, Sreenivas N, et al. 2000. Sources of suspended organic matter and selective feeding by zooplankton in an estuarine mangrove ecosystem as traced by stable isotopes. Marine Ecology Progress Series, 208:79-92, doi: 10.3354/meps208079
    Chen Luzhen, Wang Wenqing, Zhang Yihui, et al. 2009. Recent progresses in mangrove conservation, restoration and research in China. Journal of Plant Ecology, 2(2):45-54, doi: 10.1093/jpe/rtp009
    Choudhury A K, Das M, Philip P, et al. 2015. An assessment of the implications of seasonal precipitation and anthropogenic influences on a mangrove ecosystem using phytoplankton as proxies. Estuaries and Coasts, 38(3):854-872, doi: 10.1007/s12237-014-9854-x
    Cloern J E, Canuel E A, Harris D. 2002. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnology and Oceanography, 47(3):713-729, doi: 10.4319/lo.2002.47.3.0713
    Collins S V, Reinhardt E G, Werner C L, et al. 2015. Late Holocene mangrove development and onset of sedimentation in the Yax Chen cave system (Ox Bel Ha) Yucatan, Mexico:implications for using cave sediments as a sea-level indicator. Palaeogeography, Palaeoclimatology, Palaeoecology, 438:124-134, doi: 10.1016/j.palaeo.2015.07.042
    Ding Pingxing, Wang Houjie, Meng Xianwei, et al. 2013. Evolution and Cause Analysis of Typical Coastal Zones in China During the Last 50 Years (in Chinese). Beijing:Science Press, 300-302
    Dittmar T, Lara R J, Kattner G. 2001. River or mangrove? Tracing major organic matter sources in tropical Brazilian coastal waters. Marine Chemistry, 73(3-4):253-271
    Dorale J A, González L A, Reagan M K, et al. 1992. A high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, Northeast Iowa. Science, 258(5088):1626-1630, doi: 10.1126/science.258.5088.1626
    Duke N C, Ball M C, Ellison J C. 1998. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters, 7(1):27-47, doi: 10.2307/2997695
    Ellison J C. 1993. Mangrove retreat with rising sea-level, Bermuda. Estuarine, Coastal and Shelf Science, 37(1):75-87, doi: 10.1006/ecss.1993.1042
    Ellison J C. 2008. Long-term retrospection on mangrove development using sediment cores and pollen analysis:a review. Aquatic Botany, 89(2):93-104, doi: 10.1016/j.aquabot.2008.02.007
    Ellison A M, Farnsworth E J. 1996. Anthropogenic disturbance of Caribbean mangrove ecosystems:past impacts, present trends, and future predictions. Biotropica, 28(4):549-565, doi: 10.2307/2389096
    Ellison A M, Farnsworth E J. 1997. Simulated sea level change alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L.). Oecologia, 112(4):435-446, doi: 10.1007/s004420050330
    Ellison J C, Stoddart D R. 1991. Mangrove ecosystem collapse during predicted sea-level rise:Holocene analogues and implications. Journal of Coastal Research, 7(1):151-165
    Fan Hangqing. 1995. Mangrove resources, human disturbance and rehabilitation action in China. Chinese Biodiversity, 3(S1):49-54
    Fan Hangqing, Chen Guanghua, He Binyuan, et al. 2005. Coastal Wetland and Management of Shankou Mangroves (in Chinese). Beijing:China Ocean Press, 35-89
    FAO. 2007. The world's mangroves 1980-2005. Rome:FAO, 8-9
    Gilman E L, Ellison J, Duke N C, et al. 2008. Threats to mangroves from climate change and adaptation options:a review. Aquatic Botany, 89(2):237-250, doi: 10.1016/j.aquabot.2007.12.009
    Goñi M A, Ruttenberg K C, Eglinton T I. 1997. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico. Nature, 389(6648):275-278, doi: 10.1038/38477
    Gonneea M E, Paytan A, Herrera-Silveira J A. 2004. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years. Estuarine, Coastal and Shelf Science, 61(2):211-227, doi: 10.1016/j.ecss.2004.04.015
    González-Farias F, Mee L D. 1988. Effect of mangrove humic-like substances on biodegradation rate of detritus. Journal of Experimental Marine Biology and Ecology, 119(1):1-13, doi: 10.1016/0022-0981(88)90148-7
    Hait A K, Behling H. 2009. Holocene mangrove and coastal environmental changes in the western Ganga-Brahmaputra Delta, India. Vegetation History and Archaeobotany, 18(2):159-169, doi: 10.1007/s00334-008-0203-5
    He Yingxue, Lin Feng, Chen Min, et al. 2014. Carbon and nitrogen isotopic composition of particulate organic matter in the northern Beibu Gulf in Spring. Journal of Xiamen University:Natural Science (in Chinese), 53(2):246-251
    Jennerjahn T C, Ittekkot V. 2002. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften, 89(1):23-30, doi: 10.1007/s00114-001-0283-x
    Ju Jianhua, Slingo J. 1995. The Asian summer monsoon and ENSO. Quarterly Journal of the Royal Meteorological Society, 121(525):1133-1168, doi: 10.1002/qj.49712152509
    Li Zhen, Zhang Zhiying, Li Jie, et al. 2008. Pollen distribution in surface sediments of a mangrove system, Yingluo Bay, Guangxi, China. Review of Palaeobotany and Palynology, 152(1-2):21-31
    Limaye R B, Kumaran K P N. 2012. Mangrove vegetation responses to Holocene climate change along Konkan coast of south-western India. Quaternary International, 263:114-128, doi: 10.1016/j.quaint.2012.01.034
    Ljungqvist F C. 2010. A new reconstruction of temperature variability in the extra-tropical northern hemisphere during the last two millennia. Geografiska Annaler:Series A, Physical Geography, 92(3):339-351, doi: 10.1111/j.1468-0459.2010.00399.x
    Loubere P, Creamer W, Haas J. 2013. Evolution of the El Nino-Southern Oscillation in the late Holocene and insolation driven change in the tropical annual SST cycle. Global and Planetary Change, 100:129-144, doi: 10.1016/j.gloplacha.2012.10.007
    Meng Xianwei, Xia Peng, Li Zhen, et al. 2016. Mangrove degradation and response to anthropogenic disturbance in the Maowei Sea (SW China) since 1926 AD:mangrove-derived OM and pollen. Organic Geochemistry, 98:166-175, doi: 10.1016/j.orggeochem.2016.06.001
    Meng Xianwei, Xia Peng, Li Zhen, et al. 2017. Mangrove development and its response to Asian Monsoon in the Yingluo Bay (SW China) over the last 2000 years. Estuaries and Coasts, 40(2):540-552, doi: 10.1007/s12237-016-0156-3
    Meyers P A. 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27(5-6):213-250
    Monacci N M, Meier-Grünhagen U, Finney B P, et al. 2009. Mangrove ecosystem changes during the Holocene at Spanish Lookout Cay, Belize. Palaeogeography, Palaeoclimatology, Palaeoecology, 280(1-2):37-46
    Moy C M, Seltzer G O, Rodbell D T, et al. 2002. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature, 420(6912):162-165, doi: 10.1038/nature01194
    Perdue E M, Koprivnjak J F. 2007. Using the C/N ratio to estimate terrigenous inputs of organic matter to aquatic environments. Estuarine, Coastal and Shelf Science, 73(1-2):65-72
    Reimer P J, Bard E, Bayliss A, et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon, 55(4):1869-1887, doi: 10.2458/azu_js_rc.55.16947
    Sanders C J, Smoak J M, Naidu A S, et al. 2008. Recent sediment accumulation in a mangrove forest and its relevance to local sea-level rise (Ilha Grande, Brazil). Journal of Coastal Research, 24(2):533-536
    Sanders C J, Smoak J M, Waters M N, et al. 2012. Organic matter content and particle size modifications in mangrove sediments as responses to sea level rise. Marine Environmental Research, 77:150-155, doi: 10.1016/j.marenvres.2012.02.004
    Shepard F P. 1954. Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Petrology, 24(3):151-158
    Shi Xiaojun, Yu Kefu, Chen Tegu. 2007. Progress in researches on sea-level changes in South China Sea since Mid-Holocene. Marine Geology & Quaternary Geology (in Chinese), 27(5):121-132
    Snedaker S C, Meeder J F, Ross M S, et al. 1994. Discussion of Ellison, Joanna C. and Stoddart, David R., 1991. Mangrove ecosystem collapse during predicted sea-level rise:Holocene analogues and implications. Journal of Coastal Research, 7(1):151-165. Journal of Coastal Research, 10(2):497-498
    SOA (State Oceanic Administration, People's Republic of China). 2018. Marine disaster bulletin of China in 2017 (in Chinese). Beijing:SOA, http://www.soa.gov.cn/zwgk/hygb/zghyzhgb/2017nzghyzhgb_5165/201804/t20180423_61092.html[2018-04-23]
    Stattegger K, Tjallingii R, Saito Y, et al. 2013. Mid to late Holocene sea-level reconstruction of Southeast Vietnam using beachrock and beach-ridge deposits. Global and Planetary Change, 110:214-222, doi: 10.1016/j.gloplacha.2013.08.014
    Stuiver M, Polach H A. 1977. Discussion reporting of 14C data. Radiocarbon, 19(3):355-363, doi: 10.1017/S0033822200003672
    Stuiver M, Reimer P J. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon, 35(1):215-230, doi: 10.1017/S0033822200013904
    Talma A S, Vogel J C. 1993. A simplified approach to calibrating 14C dates. Radiocarbon, 35(2):317-322, doi: 10.1017/S0033822200065000
    Valiela I, Bowen J L, York J K. 2001. Mangrove forests:one of the world's threatened major tropical environments. BioScience, 51(10):807-815, doi: 10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2
    Versteegh G J M, Schefuß E, Dupont L, et al. 2004. Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystems. Geochimica et Cosmochimica Acta, 68(3):411-422, doi: 10.1016/S0016-7037(03)00456-3
    Wang Yongjin, Cheng Hai, Edwards R L, et al. 2005. The Holocene Asian monsoon:links to solar changes and North Atlantic climate. Science, 308(5723):854-857, doi: 10.1126/science.1106296
    Wooller M, Smallwood B, Scharler U, et al. 2003. A taphonomic study of δ13C and δ15N values in Rhizophora mangle leaves for a multi-proxy approach to mangrove palaeoecology. Organic Geochemistry, 34(9):1259-1275, doi: 10.1016/S0146-6380(03)00116-5
    Wooller M J, Morgan R, Fowell S, et al. 2007. A multiproxy peat record of Holocene mangrove palaeoecology from Twin Cays, Belize. The Holocene, 17(8):1129-1139, doi: 10.1177/0959683607082553
    Xia Peng, Meng Xianwei, Feng Aiping, et al. 2015a. Sediment compaction rates in mangrove swamps of Guangxi and its mangrove migration response to sea-level rise. Acta Sedimentologica Sinica (in Chinese), 33(3):551-560
    Xia Peng, Meng Xianwei, Li Zhen, et al. 2015b. Mangrove development and its response to environmental change in Yingluo Bay (SW China) during the last 150 years:stable carbon isotopes and mangrove pollen. Organic Geochemistry, 85:32-41, doi: 10.1016/j.orggeochem.2015.04.003
    Xia Peng, Meng Xianwei, Li Zhen, et al. 2016. Sedimentary records of mangrove evolution during the past one hundred years based on stable carbon isotope and pollen evidences in Maowei, SW China. Journal of Ocean University of China, 15(3):447-455, doi: 10.1007/s11802-016-2687-4
    Xia Peng, Meng Xianwei, Li Zhen, et al. 2017. Organic carbon isotope and pollen evidence for mangrove development and response to human activity in Guangxi (Southwest China) over the last 140 years. Acta Oceanologica Sinica, 36(2):11-21, doi: 10.1007/s13131-016-0849-2
    Xue Bo, Yan Chongling, Lu Haoliang, et al. 2009. Mangrove-derived organic carbon in sediment from Zhangjiang estuary (China) mangrove wetland. Journal of Coastal Research, 25(4):949-956
    Yu Kefu, Zhao Jianxin, Done T, et al. 2009. Microatoll record for large century-scale sea-level fluctuations in the mid-Holocene. Quaternary Research, 71(3):354-360, doi: 10.1016/j.yqres.2009.02.003
    Zhao Kan, Wang Yongjin, Edwards R L, et al. 2016. Contribution of ENSO variability to the East Asian summer monsoon in the late Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 449:510-519, doi: 10.1016/j.palaeo.2016.02.044
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (481) PDF downloads(164) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return