Citation: | Yanbing Zhu, Xiaoqian Yin, Han Liu, Hebin Li, Yanhong Chen, Lijun Li, Anfeng Xiao, Hui Ni. Substitution of His260 residue alters the thermostability of Pseudoalteromonas carrageenovora arylsulfatase[J]. Acta Oceanologica Sinica, 2019, 38(6): 75-82. doi: 10.1007/s13131-019-1356-z |
Akbulut N, Tuzlakoğlu Öztürk M, Pijning T, et al. 2013. Improved activity and thermostability of Bacillus pumilus lipase by directed evolution. Journal of Biotechnology, 164(1): 123–129. doi: 10.1016/j.jbiotec.2012.12.016
|
Arnott S, Fulmer A, Scott W E, et al. 1974. The agarose double helix and its function in agarose gel structure. Journal of Molecular Biology, 90(2): 269–284. doi: 10.1016/0022-2836(74)90372-6
|
Barbeyron T, Potin P, Richard C, et al. 1995. Arylsulphatase from Alteromonas carrageenovora. Microbiology, 141(11): 2897–2904. doi: 10.1099/13500872-141-11-2897
|
Ben Mabrouk S, Ayadi D Z, Ben Hlima H, et al. 2013. Thermostability improvement of maltogenic amylase MAUS149 by error prone PCR. Journal of Biotechnology, 168(4): 601–606. doi: 10.1016/j.jbiotec.2013.08.026
|
Blum S C, Lehmann J, Solomon D, et al. 2013. Sulfur forms in organic substrates affecting S mineralization in soil. Geoderma, 200–201: 156–164
|
Boersma Y L, Dröge M J, Quax W J. 2007. Selection strategies for improved biocatalysts. The FEBS Journal, 274(9): 2181–2195. doi: 10.1111/ejb.2007.274.issue-9
|
Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2): 248–254
|
Cregut M, Rondags E. 2013. New insights in agar biorefinery with arylsulphatase activities. Process Biochemistry, 48(12): 1861–1871. doi: 10.1016/j.procbio.2013.09.020
|
Duckworth M, Yaphe W. 1971. The structure of agar: Part I. Fractionation of a complex mixture of polysaccharides. Carbohydrate Research, 16(1): 189–197. doi: 10.1016/S0008-6215(00)86113-3
|
Gao Chao, Jin Min, Yi Zhiwei, et al. 2015. Characterization of a recombinant thermostable arylsulfatase from deep-sea bacterium Flammeovirga pacifica. Journal of Microbiology and Biotechnology, 25(11): 1894–1901. doi: 10.4014/jmb.1504.04028
|
Guiseley K B. 1970. The relationship between methoxyl content and gelling temperature of agarose. Carbohydrate Research, 13(2): 247–256. doi: 10.1016/S0008-6215(00)80831-9
|
Guo Jing, Rao Zhiming, Yang Taowei, et al. 2015. Enhancement of the thermostability of Streptomyces kathirae SC-1 tyrosinase by rational design and empirical mutation. Enzyme and Microbial Technology, 77: 54–60. doi: 10.1016/j.enzmictec.2015.06.002
|
Henderson M J, Milazzo F H. 1979. Arylsulfatase in Salmonella typhimurium: detection and influence of carbon source and tyramine on its synthesis. Journal of Bacteriology, 139(1): 80–87
|
Izumi K. 1970. A new method for fractionation of agar. Agricultural and Biological Chemistry, 34(1): 1739–1740
|
Kim D E, Kim K H, Bae Y J, et al. 2005. Purification and characterization of the recombinant arylsulfatase cloned from Pseudoalteromonas carrageenovora. Protein Expression and Purification, 39(1): 107–115. doi: 10.1016/j.pep.2004.09.007
|
Kim J H, Byun D S, Godber J S, et al. 2004. Purification and characterization of arylsulfatase from Sphingomonas sp. AS6330. Applied Microbiology and Biotechnology, 63(5): 553–559. doi: 10.1007/s00253-003-1463-8
|
Kumar A, Singh S. 2013. Directed evolution: tailoring biocatalysts for industrial applications. Critical Reviews in Biotechnology, 33(4): 365–378. doi: 10.3109/07388551.2012.716810
|
Laskowski R A, MacArthur M W, Moss D S, et al. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2): 283–291. doi: 10.1107/S0021889892009944
|
Lee D G, Shin J G, Jeon M J, et al. 2013. Heterologous expression and characterization of a recombinant thermophilic arylsulfatase from Thermotoga maritima. Biotechnology and Bioprocess Engineering, 18(5): 897–902. doi: 10.1007/s12257-013-0094-x
|
Letunic I, Doerks T, Bork P. 2015. SMART: recent updates, new developments and status in 2015. Nucleic Acids Research, 43(D1): D257–D260. doi: 10.1093/nar/gku949
|
Lim J M, Jang Y H, Kim H R, et al. 2004. Overexpression of arylsulfatase in E. coli and its application to desulfatation of agar. Journal of Microbiology and Biotechnology, 14(4): 777–782
|
Lin Ling, Fu Chenggen, Huang Weiqian. 2016. Improving the activity of the endoglucanase, Cel8M from Escherichia coli by error-prone PCR. Enzyme and Microbial Technology, 86: 52–58. doi: 10.1016/j.enzmictec.2016.01.011
|
Marino T, Russo N, Toscano M. 2013. Catalytic mechanism of the arylsulfatase promiscuous enzyme from Pseudomonas aeruginosa. Chemistry-A European Journal, 19(6): 2185–2192. doi: 10.1002/chem.v19.6
|
Miech C, Dierks T, Selmer T, et al. 1998. Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine. The Journal of Biological Chemistry, 273(9): 4835–4837. doi: 10.1074/jbc.273.9.4835
|
Mohammadi M, Sepehrizadeh Z, Ebrahim-Habibi A, et al. 2016. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis. Enzyme and Microbial Technology, 93–94: 18–28
|
Murooka Y, Yim M H, Harada T. 1980. Formation and purification of Serratia marcescens arylsulfatase. Applied and Environmental Microbiology, 39(4): 812–817
|
Niu Rungui, Jing Hua, Chen Zhao, et al. 2012. Differentiating malignant colorectal tumor patients from benign colorectal tumor patients by assaying morning urinary arylsulfatase activity. Asia-Pacific Journal of Clinical Oncology, 8(4): 362–367. doi: 10.1111/ajco.2012.8.issue-4
|
Okamura H, Yamada T, Murooka Y, et al. 2008. Purification and properties of arylsulfatase of Klebsiella aerogenes identity of the enzymes formed by non-repressed and de-repressed synthesis. Agricultural and Biological Chemistry, 40(10): 2071–2076
|
Schweiker K L, Makhatadze G I. 2009. Protein stabilization by the rational design of surface charge–charge interactions. In: Shriver J, ed. Protein Structure, Stability, and Interactions. New York: Humana Press, 490: 261–283
|
Schweiker K L, Zarrine-Afsar A, Davidson A R, et al. 2007. Computational design of the Fyn SH3 domain with increased stability through optimization of surface charge–charge interactions. Protein Science, 16(12): 2694–2702. doi: 10.1110/(ISSN)1469-896X
|
Stressler T, Leisibach D, Lutz-Wahl S, et al. 2016a. Homologous expression and biochemical characterization of the arylsulfatase from Kluyveromyces lactis and its relevance in milk processing. Applied Microbiology and Biotechnology, 100(12): 5401–5014. doi: 10.1007/s00253-016-7366-2
|
Stressler T, Seitl I, Kuhn A, et al. 2016b. Detection, production, and application of microbial arylsulfatases. Applied Microbiology and Biotechnology, 100(21): 9053–9067. doi: 10.1007/s00253-016-7838-4
|
Tu Tao, Luo Huiying, Meng Kun, et al. 2015. Improvement in thermostability of an Achaetomium sp. strain Xz8 endopolygalacturonase via the optimization of charge-charge interactions. Applied and Environmental Microbiology, 81(19): 6938–6944. doi: 10.1128/AEM.01363-15
|
Vieira D S, Degrève L. 2009. An insight into the thermostability of a pair of xylanases: the role of hydrogen bonds. Molecular Physics, 107(1): 59–69. doi: 10.1080/00268970902717959
|
Vogt G, Woell S, Argos P. 1997. Protein thermal stability, hydrogen bonds, and ion pairs. Journal of Molecular Biology, 269(4): 631–643. doi: 10.1006/jmbi.1997.1042
|
Wang Xueyan, Duan Delin, Xu Jiachao, et al. 2015. Characterization of a novel alkaline arylsulfatase from Marinomonas sp. FW-1 and its application in the desulfation of red seaweed agar. Journal of Industrial Microbiology & Biotechnology, 42(10): 1353–1362. doi: 10.1007/s10295-015-1625-6
|
Webb B, Webb B, Marti-Renom M A, et al. 2007. Comparative protein structure modeling using Modeller. Current Protocols in Protein Science, 50(1): 2.9.1–2.9.31. doi: 10.1002/0471140864.2007.50.issue-1
|
Zhang Lujia, Tang Xiaomang, Cui Dongbing, et al. 2014. A method to rationally increase protein stability based on the charge–charge interaction, with application to lipase LipK107. Protein Science, 23(1): 110–116. doi: 10.1002/pro.2388
|
Zhou Cheng, Xue Yanfen, Ma Yanhe. 2015. Evaluation and directed evolution for thermostability improvement of a GH 13 thermostable α-glucosidase from Thermus thermophilus TC11. BMC Biotechnology, 15: 97. doi: 10.1186/s12896-015-0197-x
|
Zhu Yanbing, Zheng Wenguang, Ni Hui, et al. 2015. Molecular cloning and characterization of a new and highly thermostable esterase from Geobacillus sp. JM6. Journal of Basic Microbiology, 55(10): 1219–1231. doi: 10.1002/jobm.v55.10
|