Yanbing Zhu, Xiaoqian Yin, Han Liu, Hebin Li, Yanhong Chen, Lijun Li, Anfeng Xiao, Hui Ni. Substitution of His260 residue alters the thermostability of Pseudoalteromonas carrageenovora arylsulfatase[J]. Acta Oceanologica Sinica, 2019, 38(6): 75-82. doi: 10.1007/s13131-019-1356-z
Citation: Yanbing Zhu, Xiaoqian Yin, Han Liu, Hebin Li, Yanhong Chen, Lijun Li, Anfeng Xiao, Hui Ni. Substitution of His260 residue alters the thermostability of Pseudoalteromonas carrageenovora arylsulfatase[J]. Acta Oceanologica Sinica, 2019, 38(6): 75-82. doi: 10.1007/s13131-019-1356-z

Substitution of His260 residue alters the thermostability of Pseudoalteromonas carrageenovora arylsulfatase

doi: 10.1007/s13131-019-1356-z
Funds:  The National Natural Science Foundation of China under contract No. 31401632; the Program for New Century Excellent Talents in Fujian Province University, China under contract No. B15139.
More Information
  • Corresponding author: E-mail: nihui@jmu.edu.cn
  • Received Date: 2018-05-23
  • Accepted Date: 2018-06-22
  • Available Online: 2020-04-21
  • Publish Date: 2019-06-01
  • This study aimed to improve the thermostability of arylsulfatase from Pseudoalteromonas carrageenovora. A library of P. carrageenovora arylsulfatase mutants was constructed by introducing random mutagenesis using error-prone PCR. After screening, two mutants of H260L and D84A/H260L showed enhanced thermal stability than the wild-type predecessor (WT). Site-directed mutagenesis demonstrated that only amino acid residue at Position 260 plays an important role in the thermostability of P. carrageenovora arylsulfatase. Thermal inactivation analysis showed that the half-life (t1/2) values at 55°C for H260L, H260I, H260Q, H260F and H260R were 40.6, 48.4, 30.9, 29.1 and 34.5 min, respectively, while that of WT was 9.1 min. Structure modeling demonstrated that the additional hydrogen bonds and/or optimization of surface charge-charge interactions could be responsible for the increased thermostability imparted by H260L, H260I, H260Q, H260F and H260R.
  • loading
  • Akbulut N, Tuzlakoğlu Öztürk M, Pijning T, et al. 2013. Improved activity and thermostability of Bacillus pumilus lipase by directed evolution. Journal of Biotechnology, 164(1): 123–129. doi: 10.1016/j.jbiotec.2012.12.016
    Arnott S, Fulmer A, Scott W E, et al. 1974. The agarose double helix and its function in agarose gel structure. Journal of Molecular Biology, 90(2): 269–284. doi: 10.1016/0022-2836(74)90372-6
    Barbeyron T, Potin P, Richard C, et al. 1995. Arylsulphatase from Alteromonas carrageenovora. Microbiology, 141(11): 2897–2904. doi: 10.1099/13500872-141-11-2897
    Ben Mabrouk S, Ayadi D Z, Ben Hlima H, et al. 2013. Thermostability improvement of maltogenic amylase MAUS149 by error prone PCR. Journal of Biotechnology, 168(4): 601–606. doi: 10.1016/j.jbiotec.2013.08.026
    Blum S C, Lehmann J, Solomon D, et al. 2013. Sulfur forms in organic substrates affecting S mineralization in soil. Geoderma, 200–201: 156–164
    Boersma Y L, Dröge M J, Quax W J. 2007. Selection strategies for improved biocatalysts. The FEBS Journal, 274(9): 2181–2195. doi: 10.1111/ejb.2007.274.issue-9
    Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2): 248–254
    Cregut M, Rondags E. 2013. New insights in agar biorefinery with arylsulphatase activities. Process Biochemistry, 48(12): 1861–1871. doi: 10.1016/j.procbio.2013.09.020
    Duckworth M, Yaphe W. 1971. The structure of agar: Part I. Fractionation of a complex mixture of polysaccharides. Carbohydrate Research, 16(1): 189–197. doi: 10.1016/S0008-6215(00)86113-3
    Gao Chao, Jin Min, Yi Zhiwei, et al. 2015. Characterization of a recombinant thermostable arylsulfatase from deep-sea bacterium Flammeovirga pacifica. Journal of Microbiology and Biotechnology, 25(11): 1894–1901. doi: 10.4014/jmb.1504.04028
    Guiseley K B. 1970. The relationship between methoxyl content and gelling temperature of agarose. Carbohydrate Research, 13(2): 247–256. doi: 10.1016/S0008-6215(00)80831-9
    Guo Jing, Rao Zhiming, Yang Taowei, et al. 2015. Enhancement of the thermostability of Streptomyces kathirae SC-1 tyrosinase by rational design and empirical mutation. Enzyme and Microbial Technology, 77: 54–60. doi: 10.1016/j.enzmictec.2015.06.002
    Henderson M J, Milazzo F H. 1979. Arylsulfatase in Salmonella typhimurium: detection and influence of carbon source and tyramine on its synthesis. Journal of Bacteriology, 139(1): 80–87
    Izumi K. 1970. A new method for fractionation of agar. Agricultural and Biological Chemistry, 34(1): 1739–1740
    Kim D E, Kim K H, Bae Y J, et al. 2005. Purification and characterization of the recombinant arylsulfatase cloned from Pseudoalteromonas carrageenovora. Protein Expression and Purification, 39(1): 107–115. doi: 10.1016/j.pep.2004.09.007
    Kim J H, Byun D S, Godber J S, et al. 2004. Purification and characterization of arylsulfatase from Sphingomonas sp. AS6330. Applied Microbiology and Biotechnology, 63(5): 553–559. doi: 10.1007/s00253-003-1463-8
    Kumar A, Singh S. 2013. Directed evolution: tailoring biocatalysts for industrial applications. Critical Reviews in Biotechnology, 33(4): 365–378. doi: 10.3109/07388551.2012.716810
    Laskowski R A, MacArthur M W, Moss D S, et al. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2): 283–291. doi: 10.1107/S0021889892009944
    Lee D G, Shin J G, Jeon M J, et al. 2013. Heterologous expression and characterization of a recombinant thermophilic arylsulfatase from Thermotoga maritima. Biotechnology and Bioprocess Engineering, 18(5): 897–902. doi: 10.1007/s12257-013-0094-x
    Letunic I, Doerks T, Bork P. 2015. SMART: recent updates, new developments and status in 2015. Nucleic Acids Research, 43(D1): D257–D260. doi: 10.1093/nar/gku949
    Lim J M, Jang Y H, Kim H R, et al. 2004. Overexpression of arylsulfatase in E. coli and its application to desulfatation of agar. Journal of Microbiology and Biotechnology, 14(4): 777–782
    Lin Ling, Fu Chenggen, Huang Weiqian. 2016. Improving the activity of the endoglucanase, Cel8M from Escherichia coli by error-prone PCR. Enzyme and Microbial Technology, 86: 52–58. doi: 10.1016/j.enzmictec.2016.01.011
    Marino T, Russo N, Toscano M. 2013. Catalytic mechanism of the arylsulfatase promiscuous enzyme from Pseudomonas aeruginosa. Chemistry-A European Journal, 19(6): 2185–2192. doi: 10.1002/chem.v19.6
    Miech C, Dierks T, Selmer T, et al. 1998. Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine. The Journal of Biological Chemistry, 273(9): 4835–4837. doi: 10.1074/jbc.273.9.4835
    Mohammadi M, Sepehrizadeh Z, Ebrahim-Habibi A, et al. 2016. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis. Enzyme and Microbial Technology, 93–94: 18–28
    Murooka Y, Yim M H, Harada T. 1980. Formation and purification of Serratia marcescens arylsulfatase. Applied and Environmental Microbiology, 39(4): 812–817
    Niu Rungui, Jing Hua, Chen Zhao, et al. 2012. Differentiating malignant colorectal tumor patients from benign colorectal tumor patients by assaying morning urinary arylsulfatase activity. Asia-Pacific Journal of Clinical Oncology, 8(4): 362–367. doi: 10.1111/ajco.2012.8.issue-4
    Okamura H, Yamada T, Murooka Y, et al. 2008. Purification and properties of arylsulfatase of Klebsiella aerogenes identity of the enzymes formed by non-repressed and de-repressed synthesis. Agricultural and Biological Chemistry, 40(10): 2071–2076
    Schweiker K L, Makhatadze G I. 2009. Protein stabilization by the rational design of surface charge–charge interactions. In: Shriver J, ed. Protein Structure, Stability, and Interactions. New York: Humana Press, 490: 261–283
    Schweiker K L, Zarrine-Afsar A, Davidson A R, et al. 2007. Computational design of the Fyn SH3 domain with increased stability through optimization of surface charge–charge interactions. Protein Science, 16(12): 2694–2702. doi: 10.1110/(ISSN)1469-896X
    Stressler T, Leisibach D, Lutz-Wahl S, et al. 2016a. Homologous expression and biochemical characterization of the arylsulfatase from Kluyveromyces lactis and its relevance in milk processing. Applied Microbiology and Biotechnology, 100(12): 5401–5014. doi: 10.1007/s00253-016-7366-2
    Stressler T, Seitl I, Kuhn A, et al. 2016b. Detection, production, and application of microbial arylsulfatases. Applied Microbiology and Biotechnology, 100(21): 9053–9067. doi: 10.1007/s00253-016-7838-4
    Tu Tao, Luo Huiying, Meng Kun, et al. 2015. Improvement in thermostability of an Achaetomium sp. strain Xz8 endopolygalacturonase via the optimization of charge-charge interactions. Applied and Environmental Microbiology, 81(19): 6938–6944. doi: 10.1128/AEM.01363-15
    Vieira D S, Degrève L. 2009. An insight into the thermostability of a pair of xylanases: the role of hydrogen bonds. Molecular Physics, 107(1): 59–69. doi: 10.1080/00268970902717959
    Vogt G, Woell S, Argos P. 1997. Protein thermal stability, hydrogen bonds, and ion pairs. Journal of Molecular Biology, 269(4): 631–643. doi: 10.1006/jmbi.1997.1042
    Wang Xueyan, Duan Delin, Xu Jiachao, et al. 2015. Characterization of a novel alkaline arylsulfatase from Marinomonas sp. FW-1 and its application in the desulfation of red seaweed agar. Journal of Industrial Microbiology & Biotechnology, 42(10): 1353–1362. doi: 10.1007/s10295-015-1625-6
    Webb B, Webb B, Marti-Renom M A, et al. 2007. Comparative protein structure modeling using Modeller. Current Protocols in Protein Science, 50(1): 2.9.1–2.9.31. doi: 10.1002/0471140864.2007.50.issue-1
    Zhang Lujia, Tang Xiaomang, Cui Dongbing, et al. 2014. A method to rationally increase protein stability based on the charge–charge interaction, with application to lipase LipK107. Protein Science, 23(1): 110–116. doi: 10.1002/pro.2388
    Zhou Cheng, Xue Yanfen, Ma Yanhe. 2015. Evaluation and directed evolution for thermostability improvement of a GH 13 thermostable α-glucosidase from Thermus thermophilus TC11. BMC Biotechnology, 15: 97. doi: 10.1186/s12896-015-0197-x
    Zhu Yanbing, Zheng Wenguang, Ni Hui, et al. 2015. Molecular cloning and characterization of a new and highly thermostable esterase from Geobacillus sp. JM6. Journal of Basic Microbiology, 55(10): 1219–1231. doi: 10.1002/jobm.v55.10
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (227) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return