Sun Tao, Liu Chun'e, Li Xingzuo, An Dongzhengyang, Yu Hairui, Ma Zheng, Liu Feng. The effect of substrate grain size on burrowing ability and distribution characteristics of Perinereis aibuhitensis[J]. Acta Oceanologica Sinica, 2019, 38(12): 52-58. doi: 10.1007/s13131-019-1348-z
Citation: Sun Tao, Liu Chun'e, Li Xingzuo, An Dongzhengyang, Yu Hairui, Ma Zheng, Liu Feng. The effect of substrate grain size on burrowing ability and distribution characteristics of Perinereis aibuhitensis[J]. Acta Oceanologica Sinica, 2019, 38(12): 52-58. doi: 10.1007/s13131-019-1348-z

The effect of substrate grain size on burrowing ability and distribution characteristics of Perinereis aibuhitensis

doi: 10.1007/s13131-019-1348-z
  • Received Date: 2018-09-27
  • Perinereis aibuhitensis (Grube, 1878) lives in marine sediments of estuary or shoal areas, where substrate has some crucial environmental factors affecting its burrowing and distribution. In order to provide basic data for the habitat selection and suitability evaluations of the artificial aquaculture of P. aibuhitensis, this paper conducted a quantified analysis of its burrowing ability and explored its behavioral preferences in different substrates, including mud ( < 75 μm), fine sand (125-250 μm), medium sand (250-500 μm), coarse sand (500-2 000 μm), gravel (2 000-4 000 μm) and ceramsite (4 000-8 000 μm). The research results revealed that substrate grain size significantly affected the burrowing time, burrowing rate, burrowing depth and distribution rate (P < 0.01). Moreover, P. aibuhitensis demonstrated preferential selections relating to substrate grain sizes, had higher burrowing ability in ceramsite, mud and fine sand compared with other substrates. The strongest burrowing ability and the highest distribution rate were observed in ceramsite. The study indicated that P. aibuhitensis was sensitive to substrate grain size, which also had an impact on its burrowing process and population distribution. In the natural sea, substrates mainly composed of mud and fine sand are fit for aquaculture and stock enhancement. Based on behavioral preferences and ecological rehabilitation function of P. aibuhitensis, this paper proposes a symbiotic system of marine animals and halophytes, and constructs an ecosystem model of “Marine fish-Halophytes-Perinereis aibuhitensis” with P. aibuhitensis as the link.
  • loading
  • Alexander R R, Stanton R J Jr, Dodd J R. 1993. Influence of sediment grain size on the burrowing of bivalves:correlation with distribution and stratigraphic persistence of selected neogene clams. Palaios, 8(3):289-303, doi: 10.2307/3515151
    Beisel J N, Usseglio-Polatera P, Thomas S, et al. 1998. Stream community structure in relation to spatial variation:the influence of mesohabitat characteristics. Hydrobiologia, 389(1-3):73-88, doi: 10.1023/a:1003519429979
    Buchanan J B. 1984. Sediment analysis. In:Holme N A, McIntyre A D, eds. Methods for the Study of Marine Benthos. Oxford:Blackwell Scientific Publications, 41-65
    Bunn S E, Arthington A H. 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management, 30(4):492-507, doi: 10.1007/s00267-002-2737-0
    Burone L, Muniz P, Pires-vanin A M S, et al. 2003. Spatial distribution of organic matter in the surface sediments of Ubatuba Bay (Southeastern-Brazil). Anais da Academia Brasileira de Ciências, 75(1):77-80, doi: 10.1590/S0001-37652003000100009
    Chen J J, Mccarty D, Slack D, et al. 2000. Full scale case studies of a simplified aerated filter (BAF) for organics and nitrogen removal. Water Science & Technology, 41(4-5):1-4, doi: 10.2166/wst.2000.0417
    de la Huz R, Lastra M, López J. 2002. The influence of sediment grain size on burrowing, growth and metabolism of Donax trunculus L. (Bivalvia:Donacidae). Journal of Sea Research, 47(2):85-95, doi: 10.1016/s1385-1101(02)00108-9
    Enderlein P. 2004. Effect of substrate composition on burrowing depth and respiratory current in two spatangoids (Echinoidea). Sarsia, 89(3):190-195, doi: 10.1080/00364820410006367
    Fang Jinghui, Zhang Jihong, Jiang Zengjie, et al. 2016. Environmental remediation potential of Perinereis aibuhitensis (Polychaeta) based on the effects of temperature and feed types on its carbon and nitrogen budgets. Marine Biology Research, 12(6):583-594, doi: 10.1080/17451000.2016.1177653
    Francoeur A A, Dorgan K M. 2014. Burrowing behavior in mud and sand of morphologically divergent Polychaete species (Annelida:Orbiniidae). The Biological Bulletin, 226(2):131-145, doi: 10.1086/BBLv226n2p131
    Glenn E P, Coates W E, Riley J J, et al. 1992. Salicornia bigelovii Torr.:a seawater-irrigated forage for goats. Animal Feed Science and Technology, 40(1):21-30, doi: 10.1016/0377-8401(92)90109-j
    Hansen K, Kristensen E. 1997. Impact of macrofaunal recolonization on benthic metabolism and nutrient fluxes in a shallow marine sediment previously overgrown with macroalgal mats. Estuarine, Coastal and Shelf Science, 45(5):613-628, doi: 10.1006/ecss.1996.0229
    Hong Xiuyun, Tan Kefei. 1982. A study on the life history of Perinereis aibuhitensis Grube and the morphology of the mature maternal body. Journal of Fisheries of China (in Chinese), 6(2):165-171
    Huehner M K. 1987. Field and laboratory determination of substrate preferences of unionid mussels. Ohio Journal of Science, 87(1), 29-32, http://hdl.handle.net/1811/23180
    Hunter R D, Elder H Y. 1989. Burrowing dynamics and energy cost of transport in the soft-bodied marine invertebrates Polyphysia crassa and Priapulus caudatus. Journal of Zoology, 218(2):209-222, doi: 10.1111/j.1469-7998.1989.tb02533.x
    Jia Xinmiao, Zhang Tong, Tian Shengyan. 2017. Particle reworking by the sediment-living polychaetes Perinereis aibuhitensis. Marine Science Bulletin, 19(1):85-90, http://en.cnki.com.cn/Article_en/CJFDTotal-HYTY201701007.htm
    Jørgensen A, Giessing A M B, Rasmussen L J, et al. 2008. Biotransformation of polycyclic aromatic hydrocarbons in marine polychaetes. Marine Environmental Research, 65(2):171-186, doi: 10.1016/j.marenvres.2007.10.001
    Kamal A H M, Hishamuddin O, Boyd C E. 2018. Physical and chemical characteristics of soil from tiger shrimp aquaculture ponds at Malacca, Malaysia. Journal of Applied Aquaculture, 30(1):47-62, doi: 10.1080/10454438.2017.1406417
    Kondo Y. 1987. Burrowing depth of infaunal bivalves-observation of living species and its relation to shell morphology. Transactions and Proceedings of the Paleontological Society of Japan. New Series, 148:306-323, doi: 10.14825/prpsj1951.1987.148_306
    Koo B J, Seo J. 2017. Sediment reworking by a polychaete, Perinereis aibuhitensis, in the intertidal sediments of the Gomso Bay, Korea. Ocean Science Journal, 52(4):511-518, doi: 10.1007/s12601-017-0037-0
    Lange G, Darr A, Zettler M L. 2014. Macrozoobenthic communities in waters off Angola. African Journal of Marine Science, 36(3):313-321, doi: 10.2989/1814232X.2014.948913
    Liu Hongjun, Liu Ming, Ge Shanshan, et al. 2012. Population structuring and historical demography of a common clam worm Perinereris aibuhitensis near the coasts of Shandong Peninsula. Biochemical Systematics and Ecology, 44:70-78, doi: 10.1016/j.bse.2012.04.019
    Lopez G R, Levinton J S. 1987. Ecology of deposit-feeding animals in marine sediments. The Quarterly Review of Biology, 62(3):235-260, doi: 10.1086/415511
    Moore R, Quarmby J, Stephenson T. 2001. The effects of media size on the performance of biological aerated filters. Water Research, 35(10):2514-2522, doi: 10.1016/s0043-1354(00)00534-0
    Nel R, McLachlan A, Winter D P E. 2001. The effect of grain size on the burrowing of two Donax species. Journal of Experimental Marine Biology and Ecology, 265(2):219-238, doi: 10.1016/s0022-0981(01)00335-5
    Neuhoff H G. 1979. Influence of temperature and salinity on food conversion and growth of different Nereis species (Polychaeta, Annelida). Marine Ecology Progress Series, 1:255-262, doi: 10.3354/meps001255
    Pruell R J, Taplin B K, McGovern D G, et al. 2000. Organic contaminant distributions in sediments, polychaetes (Nereis virens) and American lobster (Homarus americanus) from a laboratory food chain experiment. Marine Environmental Research, 49(1):19-36, doi: 10.1016/s0141-1136(99)00046-x
    Sandell L. 2014. Vermicompost for reduction of vegetable waste and a possible means to produce fish feed in aquaponic systems?[dissertation]. Uppsala:Sveriges Lantbruksuniversitet, https://stud.epsilon.slu.se/7510
    Schmidlin S, Baur B. 2007. Distribution and substrate preference of the invasive clam Corbicula fluminea in the river Rhine in the region of Basel (Switzerland, Germany, France). Aquatic Science, 69(1):153-161, doi: 10.1007/s00027-006-0865-y
    Shin P K S, Ng A W M, Cheung R Y H. 2002. Burrowing responses of the short-neck clam Ruditapes philippinarum to sediment contaminants. Marine Pollution Bulletin, 45(1-12):133-139, doi: 10.1016/s0025-326x(01)00299-5
    Song Zhenping, Li Xia, Wang Fujing, et al. 2010. Histological observation of the major organs of sluge worm Perinereis aibuhitensis. Journal Dalian Ocean University (in Chinese), 25(4):320-323, doi: 10.3969/j.issn.1000-9957.2010.04.007
    Stevens B G. 2003. Settlement, substratum preference, and survival of red king crab Paralithodes camtschaticus (Tilesius, 1815) glaucothoe on natural substrata in the laboratory. Journal of Experimental Marine Biology and Ecology, 283(1-2):63-78, doi: 10.1016/s0022-0981(02)00471-9
    Takagi H, Tamiru M, Abe A, et al. 2015. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nature Biotechnology, 33(5):445-449, doi: 10.1038/nbt.3188
    Tian Yulu, Liu Hongjun, Wang Qixiang, et al. 2014. Acute and chronic toxic effects of Pb2+ on polychaete Perinereis aibuhitensis:morphological changes and responses of the antioxidant system. Journal of Environmental Sciences, 26(8):1681-1688, doi: 10.1016/j.jes.2014.06.008
    Zhang Quanguo, Jing Yanyan, Zhou Xuehua, et al. 2008. Hydrogen production capacity of immobilized photosynthetic bacteria cells on different absorb material. Transactions of the CSAE (in Chinese), 24(9):199-202, doi: 10.3321/j.issn:1002-6819.2008.09.040
    Zhao Gengxing, Lin G, Fletcher J J, et al. 2004. Cultivated land changes and their driving forces-a satellite remote sensing analysis in the Yellow River Delta, China. Pedosphere, 14(1):93-102
    Zhou Shanshan, Zhang Xiumei, Cai Xingyuan, et al. 2014. Effects of temperature on burrowing ability of juvenile ark shell (Anadara broughtonii) and predation rate on juvenile ark shell by sea star (Asterias amurensis). Journal of Fisheries of China (in Chinese), 38(9):1439-1446, doi: 10.3724/SP.J.1231.2014.49243
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (393) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return