CHEN Jie, TAO Chunhui, LIANG Jin, LIAO Shili, DONG Chuanwan, LI Huaiming, LI Wei, WANG Yuan, YUE Xihe, HE Yonghua. Newly discovered hydrothermal fields along the ultraslow-spreading Southwest Indian Ridge around 63°E[J]. Acta Oceanologica Sinica, 2018, 37(11): 61-67. doi: 10.1007/s13131-018-1333-y
Citation: CHEN Jie, TAO Chunhui, LIANG Jin, LIAO Shili, DONG Chuanwan, LI Huaiming, LI Wei, WANG Yuan, YUE Xihe, HE Yonghua. Newly discovered hydrothermal fields along the ultraslow-spreading Southwest Indian Ridge around 63°E[J]. Acta Oceanologica Sinica, 2018, 37(11): 61-67. doi: 10.1007/s13131-018-1333-y

Newly discovered hydrothermal fields along the ultraslow-spreading Southwest Indian Ridge around 63°E

doi: 10.1007/s13131-018-1333-y
  • Received Date: 2018-05-05
  • The ultraslow-spreading Southwest Indian Ridge (SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely slow spreading rate, the easternmost SWIR was considered to be devoid of hydrothermal activity until the discovery of the inactive Mt. Jourdanne hydrothermal field (27°51'S, 63°56'E) in 1998. During the COMRA DY115-20 cruise in 2009, two additional hydrothermal fields (i.e., the Tiancheng (27°51'S, 63°55'E) and Tianzuo (27°57'S, 63°32'E) fields) were discovered. Further detailed investigations of these two hydrothermal sites were conducted by Chinese manned submersible Jiaolong in 2014-2015. The Tiancheng filed can be characterized as a low-temperature (up to 13.2℃) diffuse flow hydrothermal field, and is hosted by fractured basalts with hydrothermal fauna widespread on the seafloor. The Tianzuo hydrothermal field is an inactive sulfide field, which is hosted by ultramafic rocks and controlled by detachment fault. The discovery of the three hydrothermal fields around Segment #11 which receives more melt than the regional average, provided evidence for local enhanced magmatism providing heat source to drive hydrothermal circulation. We further imply that hydrothermal activity and sulfide deposits may be rather promising along the easternmost SWIR.
  • Bach W, Banerjee N R, Dick H J B, et al. 2002. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°-16°E. Geochemistry, Geophysics, Geosystems, 3(7):1044
    Baker E T. 2017. Exploring the ocean for hydrothermal venting:new techniques, new discoveries, new insights. Ore Geology Reviews, 86:55-69, doi: 10.1016/j.oregeorev.2017.02.006
    Baker E T, Chen Y J, Morgan J P. 1996. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges. Earth and Planetary Science Letters, 142(1-2):137-145, doi: 10.1016/0012-821X(96)00097-0
    Baker E T, Edmonds H N, Michael P J, et al. 2004. Hydrothermal venting in magma deserts:the ultraslow-spreading Gakkel and Southwest Indian Ridges. Geochemistry, Geophysics, Geosystems, 5(8),
    Baker E T, Feely R A, Mottl M J, et al. 1994. Hydrothermal plumes along the East Pacific Rise, 8°40' to 11°50'N:plume distribution and relationship to the apparent magmatic budget. Earth and Planetary Science Letters, 128(1-2):1-17, doi: 10.1016/0012-821X(94)90022-1
    Baker E T, Hémond C, Briais A, et al. 2014. Correlated patterns in hydrothermal plume distribution and apparent magmatic budget along 2500 km of the Southeast Indian Ridge. Geochemistry, Geophysics, Geosystems, 15(8):3198-3211, doi: 10.1002/2014GC005344
    Cannat M, Rommevaux-Jestin C, Fujimoto H. 2003. Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to 69°E). Geochemistry, Geophysics, Geosystems, 4(8):9104
    Cannat M, Rommevaux-Jestin C, Sauter D, et al. 1999. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). Journal of Geophysical Research:Solid Earth, 104(B10):22825-22843, doi: 10.1029/1999JB900195
    Cannat M, Sauter D, Mendel V, et al. 2006. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology, 34(7):605-608, doi: 10.1130/G22486.1
    Dick H J, Lin J, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965):405-412, doi: 10.1038/nature02128
    Edmonds H N, Michael P J, Baker E T, et al. 2003. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature, 421(6920):252-256, doi: 10.1038/nature01351
    German C R, Baker E T, Mevel C, et al. 1998. Hydrothermal activity along the southwest Indian ridge. Nature, 395(6701):490-493, doi: 10.1038/26730
    German C R, Klinkhammer G P, Rudnicki M D. 1996. The rainbow hydrothermal plume, 36°15'N, MAR. Geophysical Research Letters, 23(21):2979-2982, doi: 10.1029/96GL02883
    German C R, Petersen S, Hannington M D. 2016. Hydrothermal exploration of mid-ocean ridges:where might the largest sulfide deposits be forming? Chemical Geology, 420:114-126, doi: 10.1016/j.chemgeo.2015.11.006
    Hannington M, Jamieson J, Monecke T, et al. 2011. The abundance of seafloor massive sulfide deposits. Geology, 39(12):1155-1158, doi: 10.1130/G32468.1
    Haymon R M, Fornari D J, Edwards M H, et al. 1991. Hydrothermal vent distribution along the East Pacific Rise crest (9°09'-54'N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges. Earth and Planetary Science Letters, 104(2-4):513-534, doi: 10.1016/0012-821X(91)90226-8
    Hebert L B, Montési L G J. 2010. Generation of permeability barriers during melt extraction at mid-ocean ridges. Geochemistry, Geophysics, Geosystems, 11(12):Q12008
    Horner-Johnson B C, Gordon R G, Cowles S M, et al. 2005. The angular velocity of Nubia relative to Somalia and the location of the Nubia-Somalia-Antarctica triple junction. Geophysical Journal International, 162(1):221-238, doi: 10.1111/gji.2005.162.issue-1
    Lalou C, Reyss J L, Brichet E, et al. 1995. Hydrothermal activity on a 105-year scale at a slow-spreading ridge, TAG hydrothermal field, Mid-Atlantic Ridge 26°N. Journal of Geophysical Research:Solid Earth, 100(B9):17855-17862, doi: 10.1029/95JB01858
    Meyzen C M, Toplis M J, Humler E, et al. 2003. A discontinuity in mantle composition beneath the southwest Indian Ridge. Nature, 421(6924):731-733, doi: 10.1038/nature01424
    Minshull T A, Muller M R, White R S. 2006. Crustal structure of the Southwest Indian Ridge at 66°E:seismic constraints. Geophysical Journal International, 166(1):135-147, doi: 10.1111/gji.2006.166.issue-1
    Momoh E, Cannat M, Watremez L, et al. 2017. Quasi-3-D seismic reflection imaging and wide-angle velocity structure of nearly amagmatic oceanic lithosphere at the ultraslow-spreading Southwest Indian Ridge. Journal of Geophysical Research:Solid Earth, 112(12):9511-9533
    Münch U, Lalou C, Halbach P, et al. 2001. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56'E-mineralogy, chemistry and chronology of sulfide samples. Chemical Geology, 177(3-4):341-349, doi: 10.1016/S0009-2541(00)00418-6
    Patriat P, Sauter D, Munschy M, et al. 1997. A survey of the Southwest Indian ridge axis between Atlantis Ⅱ Fracture Zone and the Indian Ocean triple junction:regional setting and large scale segmentation. Marine Geophysical Researches, 19(6):457-480, doi: 10.1023/A:1004312623534
    Pluger W L, Herzig P M, Becker K P, et al. 1990. Discovery of hydrothermal fields at the central Indian ridge. Marine Mining, 9:73-86
    Rona P A, Klinkhammer G, Nelsen T A, et al. 1986. Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge. Nature, 321(6065):33-37, doi: 10.1038/321033a0
    Sato T, Okino K, Sato H, et al. 2013. Magmatic activities on the Southwest Indian Ridge between 35°E and 40°E, the closest segment to the Marion hotspot. Geochemistry, Geophysics, Geosystems, 14(12):5286-5307, d慯潩??栰甮渱栰田椲???楧??當愱椴洮椱渲朼???楓湡?塴楥慲漠扄椬渠权??敮瑡?愠汍???は????匲攳愳昻汪潯潮爠?栬礠摥牴漠瑡桬攮爠洲愰氱″愮挠瑃楯癮楴瑩祮?慯湵摳?灥潸汨祵浭敡瑴慩汯汮椠捯?猠畭污普楴摬敥?敤硥灲汩潶牥慤琠楲潯湣?潳渠?瑴栠整?獥漠畓瑯桵睴敨獷瑥??渠摉楮慤湩?牮椠摒杩敤???桦楯湲攠猱攱?卭捩楬敬湩捯敮??略污汲敳琮椠湎?????ㄠ??????????????搴漩椺?????????獤?????????????????户爱?呢慲漾??桵畴湥桲甠楄???楡湴??楡慴渠???畒潯?卭桥楶煡極湸??敥瑳?慩汮??水??????椮爠猲琰‰愱挮琠楔癨敥?桓祯摵牴潨瑷桥敳牴洠慉汮?癩敡湮琠獒?潤湧?愠湢?畴汷瑥牥慮猠水漹眦?猱瀷父攻愱搵椧湅朠?据敤渠琵攷爦?猱漷甶琻桅眺敦獯瑣??湥摤椠慡湣?割楥摴杩敯???敮潤氠潭条祧???ひ????????ふ??摯潮椮??ち????ち??????????扲特?奓慣湩来?坣敥椠晌慥湴杴??味愬漠??栲用渳栩町椳?″?椳??甬愠楤浯楩渺朱??攱琰?愶氯?‰日????′?獘用瀰?㈩????猵甭瀱?呢桲??獣畨灥??????猠畓瀬?啂?摫慥瑲椠湅朠?漬映?桯票摮牳潯瑮栠敋爠浔愠汍?猠由氹昹椸搮攠獄?晴牥潣浴??畮愠湯煦椠慨潹?桲祯摴牨潥瑲桭敡牬洠慰汬?晭楥敳氠摡??卮潧甠瑴桨睥攠獓瑯??湨摥楡慳湴?剉楮摤杩敡???慩牤楧湥攠??敡潲瀠桴票獥椠捁慭汳?剥敲獤敡慭爭捓桴?????????????????摥潯楰??び??ちぬ??獥??ちひ???????????礠25(1):97-100, doi: 10.1029/97GL03443
    Schmidt K, Koschinsky A, Garbe-Schönberg D, et al. 2007. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge:temporal and spatial investigation. Chemical Geology, 242(1-2):1-21, doi: 10.1016/j.chemgeo.2007.01.023
    Seyler M, Cannat M, Mével C. 2003. Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68°E). Geochemistry, Geophysics, Geosystems, 4(2):9101
    Smith D. 2013. Tectonics:mantle spread across the sea floor. Nature Geoscience, 6(4):247-248, doi: 10.1038/ngeo1786
    Son J, Pak S J, Kim J, et al. 2014. Tectonic and magmatic control of hydrothermal activity along the slow-spreading Central Indian Ridge, 8°S-17°S. Geochemistry, Geophysics, Geosystems, 15(5):2011-2020, doi: 10.1002/2013GC005206
    Standish J J, Sims K W W. 2010. Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge. Nature Geoscience, 3(4):286-292, doi: 10.1038/ngeo824
    Tao Chunhui, Chen Sheng, Baker E T, et al. 2017. Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits:a case study at the Zouyu-1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge. Marine Geophysical Research, 38(1-2):3-16, doi: 10.1007/s11001-016-9275-2
    T
  • Relative Articles

  • Cited by

    Periodical cited type(30)

    1. Elmar Albers, Alexander Diehl, Jessica N. Fitzsimmons, et al. Ultramafic-influenced submarine venting on basaltic seafloor at the Polaris site, 87°N, Gakkel Ridge. Earth and Planetary Science Letters, 2025, 651: 119166. doi:10.1016/j.epsl.2024.119166
    2. Jin Liang, Chunhui Tao, Jonguk Kim, et al. Morphology of sulfide structures in the active hydrothermal fields of Indian Ocean ridges and its geological implications. Deep Sea Research Part I: Oceanographic Research Papers, 2024, 203: 104215. doi:10.1016/j.dsr.2023.104215
    3. Morgane Léon, Pieter van Beek, Virginie Sanial, et al. Investigation of hydrothermal activity in the South West Indian ridge region using Ra isotopes and 227Ac as tracers. Progress in Oceanography, 2024, 221: 103191. doi:10.1016/j.pocean.2023.103191
    4. Zhongyan Qiu, Weijia Fan, Xiqiu Han, et al. Distribution, speciation and mobility of metals in sediments of the Tianxiu hydrothermal field, Carlsberg Ridge, Northwest Indian Ocean. Journal of Marine Systems, 2023, 237: 103826. doi:10.1016/j.jmarsys.2022.103826
    5. Weifang Yang, Chunhui Tao, Shili Liao, et al. Record of hydrothermal activity in the Yuhuang hydrothermal field and its implications for the Southwest Indian Ridge: evidence from sulfide chronology. Acta Oceanologica Sinica, 2023, 42(11): 59. doi:10.1007/s13131-023-2287-2
    6. Xing Xu, Shili Liao, Chunhui Tao, et al. Quantifying the influence of magmatism and tectonism on ultraslow-spreading-ridge hydrothermal activity: Evidence from the Southwest Indian Ridge. Geoscience Frontiers, 2023, 14(5): 101584. doi:10.1016/j.gsf.2023.101584
    7. 春辉 陶, 志馗 郭, 锦 梁, et al. 超慢速扩张西南印度洋中脊硫化物成矿模型. SCIENTIA SINICA Terrae, 2023, 53(6): 1216. doi:10.1360/SSTe-2023-0013
    8. Naomi van der Most, Pei-Yuan Qian, Yan Gao, et al. Active hydrothermal vent ecosystems in the Indian Ocean are in need of protection. Frontiers in Marine Science, 2023, 9 doi:10.3389/fmars.2022.1067912
    9. Teng Ding, Ágata Alveirinho Dias, Jia Wang, et al. Serpentinization and its implications for ultramafic-hosted sulfide mineralization: A case study at the Tianzuo hydrothermal field, 63.5°E, Southwest Indian Ridge. Marine Geology, 2023, 455: 106969. doi:10.1016/j.margeo.2022.106969
    10. Chunhui Tao, Zhikui Guo, Jin Liang, et al. Sulfide metallogenic model for the ultraslow-spreading Southwest Indian Ridge. Science China Earth Sciences, 2023, 66(6): 1212. doi:10.1007/s11430-023-1108-7
    11. Jia Wang, Teng Ding, Tingting Tan, et al. Sulfur sources for ultramafic‐hosted sulfide mineralization in the Tianzuo hydrothermal field, 63.5° E, South‐west Indian Ridge: Insights from sulfur and carbon isotopes. Geological Journal, 2023, 58(4): 1325. doi:10.1002/gj.4661
    12. Rengaiyan Periasamy, John Kurian Palayil, Baban Ingole. First record of sponge-associated deep-sea polychaete (Polynoidae: Bathymoorea) on the ultraslow-spreading Southwest Indian Ridge. Deep Sea Research Part I: Oceanographic Research Papers, 2023, 191: 103923. doi:10.1016/j.dsr.2022.103923
    13. Teng Ding, Jia Wang, Chunhui Tao, et al. Trace-element compositions of sulfides from inactive Tianzuo hydrothermal field, Southwest Indian Ridge: Implications for ultramafic rocks hosting mineralization. Ore Geology Reviews, 2022, 140: 104421. doi:10.1016/j.oregeorev.2021.104421
    14. C.G.C. Patten, R. Coltat, M. Junge, et al. Ultramafic-hosted volcanogenic massive sulfide deposits: an overlooked sub-class of VMS deposit forming in complex tectonic environments. Earth-Science Reviews, 2022, 224: 103891. doi:10.1016/j.earscirev.2021.103891
    15. Kurian, P. John, S. Rajan, et al. Indian Ocean Ridge System and Seafloor Hydrothermal Activity. Journal of the Geological Society of India, 2022, 98(2): 155. doi:10.1007/s12594-022-1951-z
    16. Xingwei Meng, Xianglong Jin, Xiaohu Li, et al. Subseafloor mineralization related to the shallow seawater-hydrothermal circulation system in the Longqi hydrothermal field, Southwest Indian Ridge (49.6°E): Evidence from in situ trace element and sulfur isotope compositions of pyrite varieties. Ore Geology Reviews, 2022, 145: 104914. doi:10.1016/j.oregeorev.2022.104914
    17. Dhongil Lim, Jihun Kim, Wonnyon Kim, et al. Characterization of Geochemistry in Hydrothermal Sediments From the Newly Discovered Onnuri Vent Field in the Middle Region of the Central Indian Ridge. Frontiers in Marine Science, 2022, 9 doi:10.3389/fmars.2022.810949
    18. Teng Ding, Chunhui Tao, Ágata Alveirinho Dias, et al. Sulfur isotopic compositions of sulfides along the Southwest Indian Ridge: implications for mineralization in ultramafic rocks. Mineralium Deposita, 2021, 56(5): 991. doi:10.1007/s00126-020-01025-0
    19. Hong Cao, Zhilei Sun, Zike Jiang, et al. Source origin and ore-controlling factors of hydrothermal sulfides from the Tianzuo hydrothermal field, Southwest Indian Ridge. Ore Geology Reviews, 2021, 134: 104168. doi:10.1016/j.oregeorev.2021.104168
    20. Junyu Yu, Chunhui Tao, Shili Liao, et al. Resource estimation of the sulfide-rich deposits of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge. Ore Geology Reviews, 2021, 134: 104169. doi:10.1016/j.oregeorev.2021.104169
    21. Dong Chen, Chunhui Tao, Yuan Wang, et al. Seafloor Hydrothermal Activity around a Large Non-Transform Discontinuity along Ultraslow-Spreading Southwest Indian Ridge (48.1–48.7° E). Journal of Marine Science and Engineering, 2021, 9(8): 825. doi:10.3390/jmse9080825
    22. Yongjin Huang, Chunhui Tao, Jin Liang, et al. Geological characteristics of the Qiaoyue Seamount and associated ultramafic-hosted seafloor hydrothermal system (∼52.1°E, Southwest Indian Ridge). Acta Oceanologica Sinica, 2021, 40(11): 138. doi:10.1007/s13131-021-1832-0
    23. Zhen Dong, Chunhui Tao, Jin Liang, et al. Geochemistry of Basalts from Southwest Indian Ridge 64° E: Implications for the Mantle Heterogeneity East of the Melville Transform. Minerals, 2021, 11(2): 175. doi:10.3390/min11020175
    24. Shili Liao, Chuanwei Zhu, Jianping Zhou, et al. Distal axis sulfide mineralization on the ultraslow-spreading Southwest Indian Ridge: an LA-ICP-MS study of pyrite from the East Longjing-2 hydrothermal field. Acta Oceanologica Sinica, 2021, 40(5): 105. doi:10.1007/s13131-020-1681-2
    25. Jin Sun, Yadong Zhou, Chong Chen, et al. Nearest vent, dearest friend: biodiversity of Tiancheng vent field reveals cross-ridge similarities in the Indian Ocean. Royal Society Open Science, 2020, 7(3): 200110. doi:10.1098/rsos.200110
    26. Sook-Jin Jang, Phuong-Thao Ho, Si-Yeong Jun, et al. A newly discovered Gigantidas bivalve mussel from the Onnuri Vent Field in the northern Central Indian Ridge. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 161: 103299. doi:10.1016/j.dsr.2020.103299
    27. Zhifeng Yang, Xiang Xiao, Yu Zhang. Microbial diversity of sediments from an inactive hydrothermal vent field, Southwest Indian Ridge. Marine Life Science & Technology, 2020, 2(1): 73. doi:10.1007/s42995-019-00007-0
    28. Deepak Kumar Agarwal, Parijat Roy, L. Surya Prakash, et al. Hydrothermal signatures in sediments from eastern Southwest Indian Ridge 63°E to 68°E. Marine Chemistry, 2020, 218: 103732. doi:10.1016/j.marchem.2019.103732
    29. Lan Ma, Wen-Xiong Wang. Subcellular metal distribution in two deep-sea mollusks: Insight of metal adaptation and detoxification near hydrothermal vents. Environmental Pollution, 2020, 266: 115303. doi:10.1016/j.envpol.2020.115303
    30. Qingkai FAN, Jianghai LI, Zhonglan LIU, et al. A Quantitative Method for Active Fault Migration Distance Assessment on both Sides of Mid‐Ocean Ridges—Based on Multi‐Beam Data. Acta Geologica Sinica - English Edition, 2019, 93(4): 810. doi:10.1111/1755-6724.13850

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.0 %FULLTEXT: 30.0 %META: 67.5 %META: 67.5 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 0.2 %其他: 0.2 %Australia: 0.7 %Australia: 0.7 %China: 14.9 %China: 14.9 %France: 5.6 %France: 5.6 %Germany: 1.1 %Germany: 1.1 %India: 14.2 %India: 14.2 %Jamaica: 0.7 %Jamaica: 0.7 %Japan: 1.6 %Japan: 1.6 %Macau: 0.7 %Macau: 0.7 %Netherlands: 0.7 %Netherlands: 0.7 %Puerto Rico: 0.7 %Puerto Rico: 0.7 %Russian Federation: 5.2 %Russian Federation: 5.2 %United Kingdom: 1.6 %United Kingdom: 1.6 %United States: 51.5 %United States: 51.5 %Viet Nam: 0.7 %Viet Nam: 0.7 %其他AustraliaChinaFranceGermanyIndiaJamaicaJapanMacauNetherlandsPuerto RicoRussian FederationUnited KingdomUnited StatesViet Nam

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (872) PDF downloads(368) Cited by(30)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return