DONG Jihai, ZHONG Yisen. The spatiotemporal features of submesoscale processes in the northeastern South China Sea[J]. Acta Oceanologica Sinica, 2018, 37(11): 8-18. doi: 10.1007/s13131-018-1277-2
Citation: DONG Jihai, ZHONG Yisen. The spatiotemporal features of submesoscale processes in the northeastern South China Sea[J]. Acta Oceanologica Sinica, 2018, 37(11): 8-18. doi: 10.1007/s13131-018-1277-2

The spatiotemporal features of submesoscale processes in the northeastern South China Sea

doi: 10.1007/s13131-018-1277-2
  • Received Date: 2018-03-29
  • The spatiotemporal features of submesoscale processes (SMPs) in the northeastern South China Sea (SCS) are analyzed based on a high-resolution simulation from 2009 to 2012. The simulation results show that the SMPs with a vertical relative vorticity that matches the local planetary vorticity are ubiquitous in the upper ocean of the northeastern SCS. The SMPs distribution shows an asymmetry due to centrifugal instability, with stronger positive vorticity than negative vorticity. Meanwhile, the SMPs demonstrate an obvious seasonal variation. The SMPs are strong and active in winter but weak and inactive in summer. An investigation of the SMPs generation mechanisms reveals that flow straining and mixed layer depth account for this seasonal variation. The strong flow straining and deep mixed layer depth in winter favor the SMP generation via frontogenesis and mixed layer instability.
  • Alford M H, Peacock T, MacKinnon J A, et al. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550):65-69, doi: 10.1038/nature14399
    Boccaletti G, Ferrari R, Fox-Kemper B. 2007. Mixed layer instabilities and restratification. Journal of Physical Oceanography, 37(9):2228-2250, doi: 10.1175/JPO3101.1
    Buckingham C E, Naveira Garabato A C, Thompson A F, et al. 2016. Seasonality of submesoscale flows in the ocean surface boundary layer. Geophysical Research Letters, 43(5):2118-2116, doi: 10.1002/2016GL068009
    Callies J, Ferrari R, Klymak J M, et al. 2015. Seasonality in submesoscale turbulence. Nature Communications, 6:6862, doi: 10.1038/ncomms7862
    Capet X, McWilliams J C, Molemaker M J, et al. 2008a. Mesoscale to submesoscale transition in the California current system. Part I:Flow structure, eddy flux, and observational tests. Journal of Physical Oceanography, 38(1):29-43, doi: 10.1175/2007JPO3671.1
    Capet X, McWilliams J C, Molemaker M J, et al. 2008b. Mesoscale to submesoscale transition in the California current system. Part Ⅱ:Frontal processes. Journal of Physical Oceanography, 38(1):44-64, doi: 10.1175/2007JPO3672.1
    Capet X, McWilliams J C, Molemaker M J, et al. 2008c. Mesoscale to submesoscale transition in the California current system. Part Ⅲ:Energy balance and flux. Journal of Physical Oceanography, 38(10):2256-2269, doi: 10.1175/2008JPO3810.1
    Chen Gengxin, Hou Yinjun, Chu Xiaoqing. 2011. Mesoscale eddies in the South China Sea:Mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research:Oceans, 116(C6):C06018
    Chen Gengxin, Hou Yijun, Chu Xiaoqing, et al. 2009. The variability of eddy kinetic energy in the South China Sea deduced from satellite altimeter data. Chinese Journal of Oceanology and Limnology, 27(4):943-954, doi: 10.1007/s00343-009-9297-6
    Cheng Xuhua, Qi Yiquan. 2010. Variations of eddy kinetic energy in the South China Sea. Journal of Oceanography, 66(1):85-94, doi: 10.1007/s10872-010-0007-y
    Dong Changming, Mcwilliams J C, Shchepetkin A F. 2007. Island wakes in deep water. Journal of Physical Oceanography, 37(4):962-981, doi: 10.1175/JPO3047.1
    Gula J, Molemaker M J, McWilliams J C. 2016. Topographic generation of submesoscale centrifugal instability and energy dissipation. Nature Communications, 7:12811, doi: 10.1038/ncomms12811
    Hoskins B J. 1982. The mathematical theory of frontogenesis. Annual Review of Fluid Mechanics, 14(1):131-151, doi: 10.1146/annurev.fl.14.010182.001023
    Huang Xiaodong, Chen Zhaohui, Zhao Wei, et al. 2016. An extreme internal solitary wave event observed in the northern South China Sea. Scientific Reports, 6:30041, doi: 10.1038/srep30041
    Johnson K S, Riser S C, Karl D M. 2010. Nitrate supply from deep to near-surface waters of the north Pacific subtropical gyre. Nature, 465:1062-1065, doi: 10.1038/nature09170
    Klein P, Hua B L, Lapeyre G, et al. 2008. Upper ocean turbulence from high-resolution 3D simulations. Journal of Physical Oceanography, 38(8):1748-1763, doi: 10.1175/2007JPO3773.1
    Lapeyre G, Klein P. 2006. Impact of the small-scale elongated filaments on the oceanic vertical pump. Journal of Marine Research, 64(6):835-851, doi: 10.1357/002224006779698369
    Lévy M, Ferrari R, Franks P J S, et al. 2012. Bringing physics to life at the submesoscale. Geophysical Research Letters, 39(14):L14602
    Lévy M, Klein P, Tréguier A M. 2001. Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. Journal of Marine Research, 59(4):535-565, doi: 10.1357/002224001762842181
    Lévy M, Klein P, Tréguier A M, et al. 2010. Modifications of gyre circulation by sub-mesoscale physics. Ocean Modelling, 34(1-2):1-15, doi: 10.1016/j.ocemod.2010.04.001
    Liu Q, Kaneko A, Su J. 2008. Recent progress in studies of the South China Sea circulation. Journal of Oceanography, 64(5):753-762, doi: 10.1007/s10872-008-0063-8
    Mahadevan A. 2006. Modeling vertical motion at ocean fronts:are nonhydrostatic effects relevant at submesoscales? Ocean Modelling, 14(3-4):222-240, doi: 10.1016/j.ocemod.2006.05.005
    Mensa J A, Garraffo Z, Griffa A, et al. 2013. Seasonality of the submesoscale dynamics in the gulf stream region. Ocean Dynamics, 63(8):923-941, doi: 10.1007/s10236-013-0633-1
    Nan Feng, Xue Huijie, Xiu Peng, et al. 2011. Oceanic eddy formation and propagation southwest of Taiwan. Journal of Geophysical Research:Oceans, 116(C12):C12045, doi: 10.1029/2011JC007386
    Pollard R T, Regier L A. 1992. Vorticity and vertical circulation at an ocean front. Journal of Physical Oceanography, 22(6):609-625, doi: 10.1175/1520-0485(1992)022<0609:VAVCAA>2.0.CO;2" target="_blank">2.0.CO;2">10.1175/1520-0485(1992)022<0609:VAVCAA>2.0.CO;2
    Rosso I, Hogg A M, Kiss A E, et al. 2015. Topographic influence on submesoscale dynamics in the Southern Ocean. Geophysical Research Letters, 42(4):1139-1147, doi: 10.1002/2014GL062720
    Shcherbina A Y, D'Asaro E A, Lee C M, et al. 2013. Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophysical Research Letters, 40(17):4706-4711, doi: 10.1002/grl.50919
    Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS):a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4):347-404, doi: 10.1016/j.ocemod.2004.08.002
    Shu Yeqiang, Xiu Peng, Xue Huijie, et al. 2016. Glider-observed anticyclonic eddy in northern South China Sea. Aquatic Ecosystem Health & Management, 19(3):233-241
    Wang Guihua, Chen Dake, Su Jilan. 2008. Winter eddy genesis in the eastern South China Sea due to orographic wind jets. Journal of Physical Oceanography, 38(3):726-732, doi: 10.1175/2007JPO3868.1
    Xia Changshui, Jung K T, Wang Guansuo, et al. 2016. Case study on the three-dimensional structure of meso-scale eddy in the South China Sea based on a high-resolution model. Acta Oceanologica Sinica, 35(2):29-38, doi: 10.1007/s13131-016-0805-1
    Yang Qingxuan, Zhao Wei, Liang Xinfeng, et al. 2016. Three-dimensional distribution of turbulent mixing in the South China Sea. Journal of Physical Oceanography, 46(3):769-788, doi: 10.1175/JPO-D-14-0220.1
    Yang Qingxuan, Zhao Wei, Liang Xinfeng, et al. 2017. Elevated mixing in the periphery of mesoscale eddies in the South China Sea. Journal of Physical Oceanography, 47(4):895-907, doi: 10.1175/JPO-D-16-0256.1
    Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6:24349, doi: 10.1038/srep24349
    Zhang Zhiwei, Zhao Wei, Tian Jiwei, et al. 2013. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. Journal of Geophysical Research:Oceans, 118(12):6479-6494, doi: 10.1002/2013JC008994
    Zheng Quanan, Lin Hui, Meng Junmin, et al. 2008. Sub-mesoscale ocean vortex trains in the Luzon Strait. Journal of Geophysical Research:Oceans, 113(C4):C04032
    Zhong Yisen, Bracco A, Tian Jiwei, et al. 2017. Observed and simulated submesoscale vertical pump of an anticyclonic eddy in the South China Sea. Scientific Reports, 7:44011, doi: 10.1038/srep44011
    Zu Tingting, Wang Dongxiao, Yan Changxiang, et al. 2013. Evolution of an anticyclonic eddy southwest of Taiwan. Ocean Dynamics, 63(5):519-531, doi: 10.1007/s10236-013-0612-6
  • Relative Articles

  • Cited by

    Periodical cited type(25)

    1. Minghao Hu, Lingling Xie, Mingming Li, et al. Parameterization of turbulent mixing by deep learning in the continental shelf sea east of Hainan Island. Journal of Oceanology and Limnology, 2025. doi:10.1007/s00343-024-3266-y
    2. Yifei Zhou, Wei Duan, Haijin Cao, et al. Seasonality and potential generation mechanisms of submesoscale processes in the northern Bay of Bengal. Deep Sea Research Part I: Oceanographic Research Papers, 2024, 208: 104318. doi:10.1016/j.dsr.2024.104318
    3. Zhiwei Zhang. Submesoscale Dynamic Processes in the South China Sea. Ocean-Land-Atmosphere Research, 2024, 3 doi:10.34133/olar.0045
    4. Chunhua Qiu, Zihao Yang, Ming Feng, et al. Observational energy transfers of a spiral cold filament within an anticyclonic eddy. Progress in Oceanography, 2024, 220: 103187. doi:10.1016/j.pocean.2023.103187
    5. Zhenli Gao, Wentao Jia, Weimin Zhang, et al. Study on Seasonal Characteristics and Causes of Marine Heatwaves in the South China Sea over Nearly 30 Years. Atmosphere, 2023, 14(12): 1822. doi:10.3390/atmos14121822
    6. Caijing Huang, Lili Zeng, Dongxiao Wang, et al. Submesoscale eddies in eastern Guangdong identified using high-frequency radar observations. Deep Sea Research Part II: Topical Studies in Oceanography, 2023, 207: 105220. doi:10.1016/j.dsr2.2022.105220
    7. Hao Pan, Chunhua Qiu, Hong Liang, et al. Different vertical heat transport induced by submesoscale motions in the shelf and open sea of the northwestern South China Sea. Frontiers in Marine Science, 2023, 10 doi:10.3389/fmars.2023.1236864
    8. Xiangzhou Song, Haijin Cao, Bo Qiu, et al. Subsurface imbalance stimulated in a mesoscale eddy. Part I: Observations. Deep Sea Research Part I: Oceanographic Research Papers, 2023, 196: 104001. doi:10.1016/j.dsr.2023.104001
    9. Chunhua Qiu, Zihao Yang, Dongxiao Wang, et al. The Enhancement of Submesoscale Ageostrophic Motion on the Mesoscale Eddies in the South China Sea. Journal of Geophysical Research: Oceans, 2022, 127(9) doi:10.1029/2022JC018736
    10. Yuelin Liu, Xincheng Zhang, Zhongbin Sun, et al. Region-dependent eddy kinetic energy budget in the northeastern South China Sea revealed by submesoscale-permitting simulations. Journal of Marine Systems, 2022, 235: 103797. doi:10.1016/j.jmarsys.2022.103797
    11. Ruixi Zheng, Zhiyou Jing. Submesoscale-enhanced filaments and frontogenetic mechanism within mesoscale eddies of the South China Sea. Acta Oceanologica Sinica, 2022, 41(7): 42. doi:10.1007/s13131-021-1971-3
    12. Wenfang Lu, Xinyu Gao, Zelun Wu, et al. Framework to Extract Extreme Phytoplankton Bloom Events with Remote Sensing Datasets: A Case Study. Remote Sensing, 2022, 14(15): 3557. doi:10.3390/rs14153557
    13. Peng Xiu, Lin Guo, Wentao Ma. Modelling the influence of submesoscale processes on phytoplankton dynamics in the northern South China Sea. Frontiers in Marine Science, 2022, 9 doi:10.3389/fmars.2022.967678
    14. Yifan Wang, Jihai Dong, Chengzhen Ji, et al. Dependence of submesoscale simulation on turbulence closure schemes in the Regional Ocean Modeling System (ROMS). Ocean Modelling, 2022, 180: 102120. doi:10.1016/j.ocemod.2022.102120
    15. Renhao Wu, Liqun Jia, Chunyan Li, et al. Impact of Horizontal Resolution (Submesoscale Permitting vs. Mesoscale Resolving) on Ocean Dynamic Features in the South China Sea. Earth and Space Science, 2022, 9(10) doi:10.1029/2022EA002448
    16. Lanman Li, Xuhua Cheng, Zhiyou Jing, et al. Submesoscale motions and their seasonality in the northern Bay of Bengal. Acta Oceanologica Sinica, 2022, 41(4): 1. doi:10.1007/s13131-021-1847-6
    17. Lei Zhang, Jihai Dong. Dynamic Characteristics of a Submesoscale Front and Associated Heat Fluxes Over the Northeastern South China Sea Shelf. Atmosphere-Ocean, 2021, 59(3): 190. doi:10.1080/07055900.2021.1958741
    18. Jihai Dong, Baylor Fox-Kemper, Hong Zhang, et al. The Scale and Activity of Symmetric Instability Estimated from a Global Submesoscale-Permitting Ocean Model. Journal of Physical Oceanography, 2021, 51(5): 1655. doi:10.1175/JPO-D-20-0159.1
    19. Jinchao Zhang, Zhiwei Zhang, Bo Qiu, et al. Seasonal Modulation of Submesoscale Kinetic Energy in the Upper Ocean of the Northeastern South China Sea. Journal of Geophysical Research: Oceans, 2021, 126(11) doi:10.1029/2021JC017695
    20. Quanan Zheng, Lingling Xie, Xuejun Xiong, et al. Progress in research of submesoscale processes in the South China Sea. Acta Oceanologica Sinica, 2020, 39(1): 1. doi:10.1007/s13131-019-1521-4
    21. Hongyang Lin, Zhiyu Liu, Jianyu Hu, et al. Characterizing meso- to submesoscale features in the South China Sea. Progress in Oceanography, 2020, 188: 102420. doi:10.1016/j.pocean.2020.102420
    22. Zhiwei Zhang, Yuchen Zhang, Bo Qiu, et al. Spatiotemporal Characteristics and Generation Mechanisms of Submesoscale Currents in the Northeastern South China Sea Revealed by Numerical Simulations. Journal of Geophysical Research: Oceans, 2020, 125(2) doi:10.1029/2019JC015404
    23. Chunhua Qiu, Juan Ouyang, Jiancheng Yu, et al. Variations of mesoscale eddy SST fronts based on an automatic detection method in the northern South China Sea. Acta Oceanologica Sinica, 2020, 39(11): 82. doi:10.1007/s13131-020-1669-y
    24. Xiaolong Huang, Zhiyou Jing, Ruixi Zheng, et al. Dynamical analysis of submesoscale fronts associated with wind-forced offshore jet in the western South China Sea. Acta Oceanologica Sinica, 2020, 39(11): 1. doi:10.1007/s13131-020-1671-4
    25. Jihai Dong, Baylor Fox‐Kemper, Hong Zhang, et al. The Seasonality of Submesoscale Energy Production, Content, and Cascade. Geophysical Research Letters, 2020, 47(6) doi:10.1029/2020GL087388

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.3 %FULLTEXT: 30.3 %META: 67.7 %META: 67.7 %PDF: 2.1 %PDF: 2.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 1.1 %其他: 1.1 %Australia: 0.7 %Australia: 0.7 %Canada: 0.2 %Canada: 0.2 %China: 33.0 %China: 33.0 %Italy: 0.7 %Italy: 0.7 %Korea Republic of: 1.1 %Korea Republic of: 1.1 %Macau: 0.7 %Macau: 0.7 %Russian Federation: 2.3 %Russian Federation: 2.3 %Taiwan, China: 1.1 %Taiwan, China: 1.1 %United States: 57.9 %United States: 57.9 %淄博: 1.1 %淄博: 1.1 %其他AustraliaCanadaChinaItalyKorea Republic ofMacauRussian FederationTaiwan, ChinaUnited States淄博

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (918) PDF downloads(532) Cited by(25)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return