Citation: | DONG Jihai, ZHONG Yisen. The spatiotemporal features of submesoscale processes in the northeastern South China Sea[J]. Acta Oceanologica Sinica, 2018, 37(11): 8-18. doi: 10.1007/s13131-018-1277-2 |
Alford M H, Peacock T, MacKinnon J A, et al. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550):65-69, doi: 10.1038/nature14399
|
Boccaletti G, Ferrari R, Fox-Kemper B. 2007. Mixed layer instabilities and restratification. Journal of Physical Oceanography, 37(9):2228-2250, doi: 10.1175/JPO3101.1
|
Buckingham C E, Naveira Garabato A C, Thompson A F, et al. 2016. Seasonality of submesoscale flows in the ocean surface boundary layer. Geophysical Research Letters, 43(5):2118-2116, doi: 10.1002/2016GL068009
|
Callies J, Ferrari R, Klymak J M, et al. 2015. Seasonality in submesoscale turbulence. Nature Communications, 6:6862, doi: 10.1038/ncomms7862
|
Capet X, McWilliams J C, Molemaker M J, et al. 2008a. Mesoscale to submesoscale transition in the California current system. Part I:Flow structure, eddy flux, and observational tests. Journal of Physical Oceanography, 38(1):29-43, doi: 10.1175/2007JPO3671.1
|
Capet X, McWilliams J C, Molemaker M J, et al. 2008b. Mesoscale to submesoscale transition in the California current system. Part Ⅱ:Frontal processes. Journal of Physical Oceanography, 38(1):44-64, doi: 10.1175/2007JPO3672.1
|
Capet X, McWilliams J C, Molemaker M J, et al. 2008c. Mesoscale to submesoscale transition in the California current system. Part Ⅲ:Energy balance and flux. Journal of Physical Oceanography, 38(10):2256-2269, doi: 10.1175/2008JPO3810.1
|
Chen Gengxin, Hou Yinjun, Chu Xiaoqing. 2011. Mesoscale eddies in the South China Sea:Mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research:Oceans, 116(C6):C06018
|
Chen Gengxin, Hou Yijun, Chu Xiaoqing, et al. 2009. The variability of eddy kinetic energy in the South China Sea deduced from satellite altimeter data. Chinese Journal of Oceanology and Limnology, 27(4):943-954, doi: 10.1007/s00343-009-9297-6
|
Cheng Xuhua, Qi Yiquan. 2010. Variations of eddy kinetic energy in the South China Sea. Journal of Oceanography, 66(1):85-94, doi: 10.1007/s10872-010-0007-y
|
Dong Changming, Mcwilliams J C, Shchepetkin A F. 2007. Island wakes in deep water. Journal of Physical Oceanography, 37(4):962-981, doi: 10.1175/JPO3047.1
|
Gula J, Molemaker M J, McWilliams J C. 2016. Topographic generation of submesoscale centrifugal instability and energy dissipation. Nature Communications, 7:12811, doi: 10.1038/ncomms12811
|
Hoskins B J. 1982. The mathematical theory of frontogenesis. Annual Review of Fluid Mechanics, 14(1):131-151, doi: 10.1146/annurev.fl.14.010182.001023
|
Huang Xiaodong, Chen Zhaohui, Zhao Wei, et al. 2016. An extreme internal solitary wave event observed in the northern South China Sea. Scientific Reports, 6:30041, doi: 10.1038/srep30041
|
Johnson K S, Riser S C, Karl D M. 2010. Nitrate supply from deep to near-surface waters of the north Pacific subtropical gyre. Nature, 465:1062-1065, doi: 10.1038/nature09170
|
Klein P, Hua B L, Lapeyre G, et al. 2008. Upper ocean turbulence from high-resolution 3D simulations. Journal of Physical Oceanography, 38(8):1748-1763, doi: 10.1175/2007JPO3773.1
|
Lapeyre G, Klein P. 2006. Impact of the small-scale elongated filaments on the oceanic vertical pump. Journal of Marine Research, 64(6):835-851, doi: 10.1357/002224006779698369
|
Lévy M, Ferrari R, Franks P J S, et al. 2012. Bringing physics to life at the submesoscale. Geophysical Research Letters, 39(14):L14602
|
Lévy M, Klein P, Tréguier A M. 2001. Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. Journal of Marine Research, 59(4):535-565, doi: 10.1357/002224001762842181
|
Lévy M, Klein P, Tréguier A M, et al. 2010. Modifications of gyre circulation by sub-mesoscale physics. Ocean Modelling, 34(1-2):1-15, doi: 10.1016/j.ocemod.2010.04.001
|
Liu Q, Kaneko A, Su J. 2008. Recent progress in studies of the South China Sea circulation. Journal of Oceanography, 64(5):753-762, doi: 10.1007/s10872-008-0063-8
|
Mahadevan A. 2006. Modeling vertical motion at ocean fronts:are nonhydrostatic effects relevant at submesoscales? Ocean Modelling, 14(3-4):222-240, doi: 10.1016/j.ocemod.2006.05.005
|
Mensa J A, Garraffo Z, Griffa A, et al. 2013. Seasonality of the submesoscale dynamics in the gulf stream region. Ocean Dynamics, 63(8):923-941, doi: 10.1007/s10236-013-0633-1
|
Nan Feng, Xue Huijie, Xiu Peng, et al. 2011. Oceanic eddy formation and propagation southwest of Taiwan. Journal of Geophysical Research:Oceans, 116(C12):C12045, doi: 10.1029/2011JC007386
|
Pollard R T, Regier L A. 1992. Vorticity and vertical circulation at an ocean front. Journal of Physical Oceanography, 22(6):609-625, doi: 10.1175/1520-0485(1992)022<0609:VAVCAA>2.0.CO;2" target="_blank">2.0.CO;2">10.1175/1520-0485(1992)022<0609:VAVCAA>2.0.CO;2
|
Rosso I, Hogg A M, Kiss A E, et al. 2015. Topographic influence on submesoscale dynamics in the Southern Ocean. Geophysical Research Letters, 42(4):1139-1147, doi: 10.1002/2014GL062720
|
Shcherbina A Y, D'Asaro E A, Lee C M, et al. 2013. Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophysical Research Letters, 40(17):4706-4711, doi: 10.1002/grl.50919
|
Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS):a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4):347-404, doi: 10.1016/j.ocemod.2004.08.002
|
Shu Yeqiang, Xiu Peng, Xue Huijie, et al. 2016. Glider-observed anticyclonic eddy in northern South China Sea. Aquatic Ecosystem Health & Management, 19(3):233-241
|
Wang Guihua, Chen Dake, Su Jilan. 2008. Winter eddy genesis in the eastern South China Sea due to orographic wind jets. Journal of Physical Oceanography, 38(3):726-732, doi: 10.1175/2007JPO3868.1
|
Xia Changshui, Jung K T, Wang Guansuo, et al. 2016. Case study on the three-dimensional structure of meso-scale eddy in the South China Sea based on a high-resolution model. Acta Oceanologica Sinica, 35(2):29-38, doi: 10.1007/s13131-016-0805-1
|
Yang Qingxuan, Zhao Wei, Liang Xinfeng, et al. 2016. Three-dimensional distribution of turbulent mixing in the South China Sea. Journal of Physical Oceanography, 46(3):769-788, doi: 10.1175/JPO-D-14-0220.1
|
Yang Qingxuan, Zhao Wei, Liang Xinfeng, et al. 2017. Elevated mixing in the periphery of mesoscale eddies in the South China Sea. Journal of Physical Oceanography, 47(4):895-907, doi: 10.1175/JPO-D-16-0256.1
|
Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6:24349, doi: 10.1038/srep24349
|
Zhang Zhiwei, Zhao Wei, Tian Jiwei, et al. 2013. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. Journal of Geophysical Research:Oceans, 118(12):6479-6494, doi: 10.1002/2013JC008994
|
Zheng Quanan, Lin Hui, Meng Junmin, et al. 2008. Sub-mesoscale ocean vortex trains in the Luzon Strait. Journal of Geophysical Research:Oceans, 113(C4):C04032
|
Zhong Yisen, Bracco A, Tian Jiwei, et al. 2017. Observed and simulated submesoscale vertical pump of an anticyclonic eddy in the South China Sea. Scientific Reports, 7:44011, doi: 10.1038/srep44011
|
Zu Tingting, Wang Dongxiao, Yan Changxiang, et al. 2013. Evolution of an anticyclonic eddy southwest of Taiwan. Ocean Dynamics, 63(5):519-531, doi: 10.1007/s10236-013-0612-6
|
1. | Minghao Hu, Lingling Xie, Mingming Li, et al. Parameterization of turbulent mixing by deep learning in the continental shelf sea east of Hainan Island. Journal of Oceanology and Limnology, 2025. doi:10.1007/s00343-024-3266-y | |
2. | Yifei Zhou, Wei Duan, Haijin Cao, et al. Seasonality and potential generation mechanisms of submesoscale processes in the northern Bay of Bengal. Deep Sea Research Part I: Oceanographic Research Papers, 2024, 208: 104318. doi:10.1016/j.dsr.2024.104318 | |
3. | Zhiwei Zhang. Submesoscale Dynamic Processes in the South China Sea. Ocean-Land-Atmosphere Research, 2024, 3 doi:10.34133/olar.0045 | |
4. | Chunhua Qiu, Zihao Yang, Ming Feng, et al. Observational energy transfers of a spiral cold filament within an anticyclonic eddy. Progress in Oceanography, 2024, 220: 103187. doi:10.1016/j.pocean.2023.103187 | |
5. | Zhenli Gao, Wentao Jia, Weimin Zhang, et al. Study on Seasonal Characteristics and Causes of Marine Heatwaves in the South China Sea over Nearly 30 Years. Atmosphere, 2023, 14(12): 1822. doi:10.3390/atmos14121822 | |
6. | Caijing Huang, Lili Zeng, Dongxiao Wang, et al. Submesoscale eddies in eastern Guangdong identified using high-frequency radar observations. Deep Sea Research Part II: Topical Studies in Oceanography, 2023, 207: 105220. doi:10.1016/j.dsr2.2022.105220 | |
7. | Hao Pan, Chunhua Qiu, Hong Liang, et al. Different vertical heat transport induced by submesoscale motions in the shelf and open sea of the northwestern South China Sea. Frontiers in Marine Science, 2023, 10 doi:10.3389/fmars.2023.1236864 | |
8. | Xiangzhou Song, Haijin Cao, Bo Qiu, et al. Subsurface imbalance stimulated in a mesoscale eddy. Part I: Observations. Deep Sea Research Part I: Oceanographic Research Papers, 2023, 196: 104001. doi:10.1016/j.dsr.2023.104001 | |
9. | Chunhua Qiu, Zihao Yang, Dongxiao Wang, et al. The Enhancement of Submesoscale Ageostrophic Motion on the Mesoscale Eddies in the South China Sea. Journal of Geophysical Research: Oceans, 2022, 127(9) doi:10.1029/2022JC018736 | |
10. | Yuelin Liu, Xincheng Zhang, Zhongbin Sun, et al. Region-dependent eddy kinetic energy budget in the northeastern South China Sea revealed by submesoscale-permitting simulations. Journal of Marine Systems, 2022, 235: 103797. doi:10.1016/j.jmarsys.2022.103797 | |
11. | Ruixi Zheng, Zhiyou Jing. Submesoscale-enhanced filaments and frontogenetic mechanism within mesoscale eddies of the South China Sea. Acta Oceanologica Sinica, 2022, 41(7): 42. doi:10.1007/s13131-021-1971-3 | |
12. | Wenfang Lu, Xinyu Gao, Zelun Wu, et al. Framework to Extract Extreme Phytoplankton Bloom Events with Remote Sensing Datasets: A Case Study. Remote Sensing, 2022, 14(15): 3557. doi:10.3390/rs14153557 | |
13. | Peng Xiu, Lin Guo, Wentao Ma. Modelling the influence of submesoscale processes on phytoplankton dynamics in the northern South China Sea. Frontiers in Marine Science, 2022, 9 doi:10.3389/fmars.2022.967678 | |
14. | Yifan Wang, Jihai Dong, Chengzhen Ji, et al. Dependence of submesoscale simulation on turbulence closure schemes in the Regional Ocean Modeling System (ROMS). Ocean Modelling, 2022, 180: 102120. doi:10.1016/j.ocemod.2022.102120 | |
15. | Renhao Wu, Liqun Jia, Chunyan Li, et al. Impact of Horizontal Resolution (Submesoscale Permitting vs. Mesoscale Resolving) on Ocean Dynamic Features in the South China Sea. Earth and Space Science, 2022, 9(10) doi:10.1029/2022EA002448 | |
16. | Lanman Li, Xuhua Cheng, Zhiyou Jing, et al. Submesoscale motions and their seasonality in the northern Bay of Bengal. Acta Oceanologica Sinica, 2022, 41(4): 1. doi:10.1007/s13131-021-1847-6 | |
17. | Lei Zhang, Jihai Dong. Dynamic Characteristics of a Submesoscale Front and Associated Heat Fluxes Over the Northeastern South China Sea Shelf. Atmosphere-Ocean, 2021, 59(3): 190. doi:10.1080/07055900.2021.1958741 | |
18. | Jihai Dong, Baylor Fox-Kemper, Hong Zhang, et al. The Scale and Activity of Symmetric Instability Estimated from a Global Submesoscale-Permitting Ocean Model. Journal of Physical Oceanography, 2021, 51(5): 1655. doi:10.1175/JPO-D-20-0159.1 | |
19. | Jinchao Zhang, Zhiwei Zhang, Bo Qiu, et al. Seasonal Modulation of Submesoscale Kinetic Energy in the Upper Ocean of the Northeastern South China Sea. Journal of Geophysical Research: Oceans, 2021, 126(11) doi:10.1029/2021JC017695 | |
20. | Quanan Zheng, Lingling Xie, Xuejun Xiong, et al. Progress in research of submesoscale processes in the South China Sea. Acta Oceanologica Sinica, 2020, 39(1): 1. doi:10.1007/s13131-019-1521-4 | |
21. | Hongyang Lin, Zhiyu Liu, Jianyu Hu, et al. Characterizing meso- to submesoscale features in the South China Sea. Progress in Oceanography, 2020, 188: 102420. doi:10.1016/j.pocean.2020.102420 | |
22. | Zhiwei Zhang, Yuchen Zhang, Bo Qiu, et al. Spatiotemporal Characteristics and Generation Mechanisms of Submesoscale Currents in the Northeastern South China Sea Revealed by Numerical Simulations. Journal of Geophysical Research: Oceans, 2020, 125(2) doi:10.1029/2019JC015404 | |
23. | Chunhua Qiu, Juan Ouyang, Jiancheng Yu, et al. Variations of mesoscale eddy SST fronts based on an automatic detection method in the northern South China Sea. Acta Oceanologica Sinica, 2020, 39(11): 82. doi:10.1007/s13131-020-1669-y | |
24. | Xiaolong Huang, Zhiyou Jing, Ruixi Zheng, et al. Dynamical analysis of submesoscale fronts associated with wind-forced offshore jet in the western South China Sea. Acta Oceanologica Sinica, 2020, 39(11): 1. doi:10.1007/s13131-020-1671-4 | |
25. | Jihai Dong, Baylor Fox‐Kemper, Hong Zhang, et al. The Seasonality of Submesoscale Energy Production, Content, and Cascade. Geophysical Research Letters, 2020, 47(6) doi:10.1029/2020GL087388 |