Jia Qi, Fan Dejiang, Sun Xiaoxia, Liu Ming, Zhang Wenqiang, Yang Zuosheng. Grain size characteristics of the carbonate-free fraction of surface sediments from the Southwest Indian Ridge area and its geological significance[J]. Acta Oceanologica Sinica, 2019, 38(2): 34-43. doi: 10.1007/s13131-018-1273-6
Citation: Jia Qi, Fan Dejiang, Sun Xiaoxia, Liu Ming, Zhang Wenqiang, Yang Zuosheng. Grain size characteristics of the carbonate-free fraction of surface sediments from the Southwest Indian Ridge area and its geological significance[J]. Acta Oceanologica Sinica, 2019, 38(2): 34-43. doi: 10.1007/s13131-018-1273-6

Grain size characteristics of the carbonate-free fraction of surface sediments from the Southwest Indian Ridge area and its geological significance

doi: 10.1007/s13131-018-1273-6
  • Received Date: 2018-01-05
  • The carbonate-free fraction of 20 surface sediments collected from the ultraslow-spreading Southwest Indian Ridge (SWIR) was studied by grain size analysis and mineralogical analysis with X-ray powder diffraction (XRD), stereo microscopy and scanning electron microscopy (SEM). The characteristics of the carbonate-free fraction of the sediments were obtained, and related influential factors were discussed. The results show that the mean grain size of this fraction is in 1.96Φ-8.19Φ, with poorly sorting and unimodal, bimodal or irregular bimodal distribution patterns. Four grain size end members of the fraction are derived with the End Member Model method. The finest end member EM1 shows a significant contribution of terrigenous materials of the aeolian input and sediment carried by the bottom current. End member EM2 with medium size mainly reflects sediment of a siliceous bio-clast origin. EM3 and EM4 are interpreted as representing the coarser volcanic materials related to bedrock weathering or volcanic activities. Multi-provenance is the dominant factor controlling the grain size pattern of the carbonate-free fraction of the sediments in that area. In addition, sediment transport processes such as the bottom current and wind are the minor factors that influence the grain size distribution of the carbonate-free fraction sediments.
  • loading
  • Allen D E, Seyfried W E. 2003. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges:an experimental study at 400℃, 500 bars. Geochimica et Cosmochimica Acta, 67(8):1531-1542, doi: 10.1016/S0016-7037(02)01173-0
    Alt J C, Laverne C, Vanko D A, et al. 1996. Hydrothermal alteration of a section of upper oceanic crust in the eastern equatorial Pacific:a synthesis of results from Site 504(DSDP Legs 69, 70, and 83, and ODP Legs 111, 137, 140, and 148). In:Alt J C, Kinoshita H, Stokking L B, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results. College Station Texas:Ocean Drilling Program, 148:417-434
    An Zhisheng, Kutzbach J E, Prell W L, et al. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411(6833):62-66, doi: 10.1038/35075035
    Bach W, Banerjee N R, Dick H J B, et al. 2002. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°-16°E. Geochemistry, Geophysics, Geosystems, 3(7):1-14
    Bernard A, Munschy M, Rotstein Y, et al. 2005. Refined spreading history at the Southwest Indian Ridge for the last 96 Ma, with the aid of satellite gravity data. Geophysical Journal International, 162(3):765-778, doi: 10.1111/gji.2005.162.issue-3
    Biscaye P E, Eittreim S L. 1977. Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean. Marine Geology, 23(1-2):155-172
    Bonatti E, Honnorez J, Kirst P, et al. 1975. Metagabbros from the Mid-Atlantic Ridge at 06°N:contact-hydrothermal-dynamic metamorphism beneath the axial valley. The Journal of Geology, 83(1):61-78, doi: 10.1086/628045
    Bowman J R, Parry W T, Kropp W P, et al. 1987. Chemical and isotopic evolution of hydrothermal solutions at Bingham, Utah. Economic Geology, 82(2):395-428, doi: 10.2113/gsecongeo.82.2.395
    Cannat M, Rommevaux-Jestin C, Sauter D, et al. 1999. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). Journal of Geophysical Research:Solid Earth, 104(B10):22825-22843, doi: 10.1029/1999JB900195
    Chen Weishi, Guillaume M. 2012. HALS-based NMF with flexible constraints for hyperspectral unmixing. EURASIP Journal on Advances in Signal Processing, 2012(1):54, doi: 10.1186/1687-6180-2012-54
    Chen Yuanyuan, Yu Bingsong, Su Xin, et al. 2013. Mineralogical and geochemical characteristics of the calcareous sediments in Southwest Indian Ridge. Geological Science and Technology Information, 32(1):107-113
    Chung F H. 1974. Quantitative interpretation of X-ray diffraction patterns of mixtures. I. matrix-flushing method for quantitative multicomponent analysis. J Appl Cryst, 7:526-531, doi: 10.1107/S0021889874010387
    Cronan D S, Hodkinson R A. 1997. Geochemistry of hydrothermal sediments from ODP Sites 834 and 835 in the Lau Basin, southwest Pacific. Marine Geology, 141(1-4):237-268
    Dias á S, Barriga F J A S. 2006. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34'N; 33°26'W) at MAR. Marine Geology, 225(1-4):157-175
    Dick H J B, Lin Jian, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965):405-412, doi: 10.1038/nature02128
    Doeglas D J. 1968. Grain-size indices, classification and environment. Sedimentology, 10(2):83-100, doi: 10.1111/sed.1968.10.issue-2
    D'Orazio M, Boschi C, Brunelli D. 2004. Talc-rich hydrothermal rocks from the St. Paul and Conrad fracture zones in the Atlantic Ocean. European Journal of Mineralogy, 16(1):73-83, doi: 10.1127/0935-1221/2004/0016-0073
    Eggleton R A, Foudoulis C, Varkevisser D. 1987. Weathering of basalt:changes in rock chemistry and mineralogy. Clays and Clay Minerals, 35(3):161-169, doi: 10.1346/CCMN
    German C R, Petersen S, Hannington M D. 2016. Hydrothermal exploration of mid-ocean ridges:where might the largest sulfide deposits be forming?. Chemical Geology, 420:114-126, doi: 10.1016/j.chemgeo.2015.11.006
    Gurvich E G. 2006. Metalliferous Sediments of the World Ocean:Fundamental Theory of Deep-Sea Hydrothermal Sedimentation. Berlin:Springer, 7-201
    Hails J R. 1967. Significance of statistical parameters for distinguishing sedimentary environments in New South Wales, Australia. Journal of Sedimentary Petrology, 37(4):1059-1069
    Haine T W N, Watson A J, Liddicoat M I, et al. 1998. The flow of Antarctic bottom water to the southwest Indian Ocean estimated using CFCs. Journal of Geophysical Research:Oceans, 103(C12):27637-27653, doi: 10.1029/98JC02476
    Herzig P M, Plüger W L. 1988. Exploration for hydrothermal mineralization near the Rodriguez triple junction, Indian Ocean. Canadian Mineralogist, 26:721-736
    Huang Dasong, Zhang Xiaoyu, Zhang Guoyin, et al. 2016. Geochemical characteristics of sediments in Southwest Indian Ridge 48.6°-51.7°E. Geological Science and Technology Information, 35(1):22-29
    Hubbard C R, Evans E H, Smith D K. 1976. The reference intensity ratio, I/Ic, for computer simulated powder patterns. J Appl Cryst, 9(2):169-174, doi: 10.1107/S0021889876010807
    Humphris S E, Thompson G. 1978. Hydrothermal alteration of oceanic basalts by seawater. Geochimica et Cosmochimica Acta, 42(1):107-125, doi: 10.1016/0016-7037(78)90221-1
    Jia Qi, Fan Dejiang, Zhang Wenqiang, et al. 2017. Sulfide mineralogy of surface sediments of the Southwestern Indian Ridge and its geological implication. Acta Mineralogica Sinica, 37(6):725-736
    Jickells T D, An Z S, Andersen K K, et al. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308(5718):67-71, doi: 10.1126/science.1105959
    Kelley D S, Karson J A, Blackman D K, et al. 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature, 412(6843):145-149, doi: 10.1038/35084000
    Kolla V, Bé A W H, Biscaye P E. 1976a. Calcium carbonate distribution in the surface sediments of the Indian Ocean. Journal of Geophysical Research, 81(15):2605-2616, doi: 10.1029/JC081i015p02605
    Kolla V, Henderson L, Biscaye P E. 1976b. Clay mineralogy and sedimentation in the western Indian Ocean. Deep Sea Research and Oceanographic Abstracts, 23(10):949-961, doi: 10.1016/0011-7471(76)90825-1
    Leinen M, Cwienk D, Heath G R, et al. 1986. Distribution of biogenic silica and quartz in recent deep-sea sediments. Geology, 14(3):199-203, doi: 10.1130/0091-7613(1986)14<199:DOBSAQ>2.0.CO;2
    Li Zhenggang, Chu Fengyou, Jin Lu, et al. 2016. Major and trace element composition of surface sediments from the Southwest Indian Ridge:evidence for the incorporation of a hydrothermal component. Acta Oceanologica Sinica, 35(2):101-108, doi: 10.1007/s13131-015-0678-8
    Liang Yuyang, Li Jiabiao, Li Shoujun, et al. 2014. The Magmato-tectonic dynamic model for the Indomed-Gallieni segment of the central Southwest Indian Ridge. Chinese Journal of Geophysics, 57(9):2993-3005
    Liao Guanghong, Zhou Beifeng, Liang Chujin, et al. 2016. Moored observation of abyssal flow and temperature near a hydrothermal vent on the Southwest Indian Ridge. Journal of Geophysical Research:Oceans, 121(1):836-860, doi: 10.1002/2015JC011053
    Mantyla A W, Reid J L. 1995. On the origins of deep and bottom waters of the Indian Ocean. Journal of Geophysical Research:Oceans, 100(C2):2417-2439, doi: 10.1029/94JC02564
    McCave I N, Hall I R. 2006. Size sorting in marine muds:processes, pitfalls, and prospects for paleoflow-speed proxies. Geochemistry, Geophysics, Geosystems, 7(10):Q10N05
    McCave I N, Manighetti B, Robinson S G. 1995. Sortable silt and fine sediment size/composition slicing:parameters for palaeocurrent speed and palaeoceanography. Paleoceanography, 10(3):593-610, doi: 10.1029/94PA03039
    McLaren P, Bowles D. 1985. The effects of sediment transport on grain-size distributions. Journal of Sedimentary Petrology (SEPM), 55(4):457-470
    McManus J. 1988. Grain size determination and interpretation. In:Tucker M, ed. Techniques in Sedimentology. Oxford:Blackwell, 63-85
    Muller M R, Minshull T A, White R S. 1999. Segmentation and melt supply at the Southwest Indian Ridge. Geology, 27(10):867-870, doi: 10.1130/0091-7613(1999)027<0867:SAMSAT>2.3.CO;2
    Peterson M N A, Goldberg E D. 1962. Feldspar distributions in South Pacific pelagic sediments. Journal of Geophysical Research, 67(9):3477-3492, doi: 10.1029/JZ067i009p03477
    Paterson G A, Heslop D. 2015. New methods for unmixing sediment grain size data. Geochemistry, Geophysics, Geosystems, 16(12):4494-4506, doi: 10.1002/2015GC006070
    Povea P, Cacho I, Moreno A, et al. 2015. A new procedure for the lithic fraction characterization in marine sediments from high productivity areas:Optimization of analytical and statistical procedures. Limnology and Oceanography:Methods, 13(3):127-137
    Rea D K. 1994. The paleoclimatic record provided by eolian deposition in the deep sea:the geologic history of wind. Reviews of Geophysics, 32(2):159-195, doi: 10.1029/93RG03257
    Revel M, Sinko J A, Grousset F E, et al. 1996. Sr and Nd isotopes as tracers of North Atlantic lithic particles:paleoclimatic implications. Paleoceanography, 11(1):95-113, doi: 10.1029/95PA03199
    Rex R W, Goldberg E D. 1958. Quartz contents of pelagic sediments of the Pacific Ocean. Tellus, 10(1):153-159, doi: 10.3402/tellusa.v10i1.9223
    Ruddiman W F. 1977. Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40° to 65°N). Geological Society of America Bulletin, 88(12):1813-1827, doi: 10.1130/0016-7606(1977)88<1813:LQDOIS>2.0.CO;2
    Schmidt D N, Lazarus D, Young J R, et al. 2006. Biogeography and evolution of body size in marine plankton. Earth-Science Reviews, 78(3-4):239-266
    Severmann S, Mills R A, Palmer M R, et al. 2004. The origin of clay minerals in active and relict hydrothermal deposits. Geochimica et Cosmochimica Acta, 68(1):73-88, doi: 10.1016/S0016-7037(03)00235-7
    Skornyakova I S. 1965. Dispersed iron and manganese in Pacific Ocean sediments. International Geology Review, 7(12):2161-2174, doi: 10.1080/00206816509474192
    Snow J E, Dick H J B. 1995. Pervasive magnesium loss by marine weathering of peridotite. Geochimica et Cosmochimica Acta, 59(20):4219-4235, doi: 10.1016/0016-7037(95)00239-V
    Stein R, Grobe H, Wahsner M. 1994. Organic carbon, carbonate, and clay mineral distributions in eastern central Arctic Ocean surface sediments. Marine Geology, 119(3-4):269-285
    Sun Xiaoxia. 2011. Study on the suspended particulate minerals in the water column in the Eastern Equatorial Pacific Ocean and hydrothermal active areas in the Southwest Indian Ocean[dissertation]. Qingdao:Ocean University of China
    Sun Xiaoxia, Yang Zuosheng, Fan Dejiang, et al. 2014. Suspended zinc sulfide particles in the Southwest Indian Ridge area and their relationship with hydrothermal activity. Chinese Science Bulletin, 59(9):913-923, doi: 10.1007/s11434-014-0118-8
    Tao Chunhui, Li Huaiming, Huang Wei, et al. 2011. Mineralogical and geochemical features of sulfide chimneys from the 49°39'E hydrothermal field on the Southwest Indian Ridge and their geological inferences. Chinese Science Bulletin, 56(26):2828-2838, doi: 10.1007/s11434-011-4619-4
    Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. 2014. Seafloor hydrothermal activity and polymetallic sulfide exploration on the Southwest Indian Ridge. Chinese Science Bulletin, 59(19):2266-2276, doi: 10.1007/s11434-014-0182-0
    Udden J A. 1914. Mechanical composition of clastic sediments. Geological Society of America Bulletin, 25(1):655-744, doi: 10.1130/GSAB-25-655
    Weaver C E. 1989. Clays, Muds, and Shales. New York:Elsevier Science Publishing Company, 1-449
    Wentworth C K. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology, 30(5):377-392, doi: 10.1086/622910
    Ye Jun, Shi Xuefa, Yang Yaomin, et al. 2011. Mineralogy of sulfides from ultraslow spreading southwest Indian ridge 49.6°E hydrothermal field and its metallogenic significance. Acta Mineralogica Sinica, 31(1):17-29
    Zeng Zhigang. 2011. Submarine Hydrothermal Geology (in Chinese). Beijing:Science Press, 183-546
    Zhou Huaiyang, Dick H J B. 2013. Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature, 494(7436):195-200, doi: 10.1038/nature11842
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (672) PDF downloads(445) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return