Dong SUN, Dongsheng ZHANG, Ruiyan ZHANG, Chunsheng WANG. Different vertical distribution of zooplankton community between North Pacific Subtropical Gyre and Western Pacific Warm Pool: its implication to carbon flux[J]. Acta Oceanologica Sinica, 2019, 38(6): 32-45. doi: 10.1007/s13131-018-1237-x
Citation: Dong SUN, Dongsheng ZHANG, Ruiyan ZHANG, Chunsheng WANG. Different vertical distribution of zooplankton community between North Pacific Subtropical Gyre and Western Pacific Warm Pool: its implication to carbon flux[J]. Acta Oceanologica Sinica, 2019, 38(6): 32-45. doi: 10.1007/s13131-018-1237-x

Different vertical distribution of zooplankton community between North Pacific Subtropical Gyre and Western Pacific Warm Pool: its implication to carbon flux

doi: 10.1007/s13131-018-1237-x
Funds:  The National Basic Research Program (973 Program) of China under contract No. 2015CB755902; the China Ocean Mineral Resources Research and Development Association Program under contract No. DY135-E2-2-4; the Scientific Research Fund of the Second Institute of Oceanography, SOA under contract No. JG1712; the National Natural Science Foundation of China under contract No. 41406116.
More Information
  • Corresponding author: E-mail: wangsio@sio.org.cn
  • Received Date: 2017-09-17
  • Accepted Date: 2017-11-10
  • Available Online: 2020-04-21
  • Publish Date: 2019-06-01
  • The mesozooplankton in both epipelagic and mesopelagic zones is essentially important for the study of ecosystem and biological carbon pump. Previous studies showed that the diel vertical migration (DVM) pattern of mesozooplankton varied among ecosystems. However, that pattern was largely unknown in the Western Pacific Warm Pool (WPWP). The vertical distribution, DVM and community structure of mesozooplankton from the surface to 1 000 m were compared at Stas JL7K (WPWP) and MA (North Pacific Subtropical Gyre, NPSG). Two sites showed similarly low biomass in both epipelagic and mesopelagic zones, which were in accordance with oligotrophic conditions of these two ecosystems. Stronger DVM (night/day ratio) was found at JL7K (1.31) than that at MA (1.09) on surface 0–100 m, and an obvious night increase of mesopelagic biomass was observed at JL7K, which was probably due to migrators from bathypelagic zone. Active carbon flux by DVM of zooplankton was estimated to be 0.23 mmol/(m2·d) at JL7K and 0.16 mmol/(m2·d) at MA. The community structure analysis showed that calanoid copepods, cnidarians and appendicularians were the main contributors to DVM of mesozooplankton at both sites. We also compared the present result with previous studies of the two ecosystems, and suggested that the DVM of mesozooplankton was more homogeneous within the WPWP and more variable within the NPSG, though both ecosystems showed typically extremely oligotrophic conditions. The different diel vertical migration strength of mesozooplankton between NPSG and WPWP implied different efficiency of carbon pump in these two ecosystems.
  • loading
  • Al-Mutairi H, Landry M R. 2001. Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton. Deep Sea Research Part II: Topical Studies in Oceanography, 48(8–9): 2083–2103. doi: 10.1016/S0967-0645(00)00174-0
    Andersen V, Gubanova A, Nival P, et al. 2001. Zooplankton community during the transition from spring bloom to oligotrophy in the open NW Mediterranean and effects of wind events. 2. Vertical distributions and migrations. Journal of Plankton Research, 23(3): 243–261. doi: 10.1093/plankt/23.3.243
    Angel M V. 1999. Ostracoda. In: Boltovskoy D, ed. South Atlantic Zooplankton. Leiden: Backhuys Publishers, 815–868
    Angel M V, Pugh P R. 2000. Quantification of diel vertical migration by micronektonic taxa in the northeast Atlantic. Hydrobiologia, 440(1–3): 161–179
    Antoine D, André J M, Morel A. 1996. Oceanic primary production: 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochemical Cycles, 10(1): 57–69
    Ariza A, Garijo J C, Landeira J M, et al. 2015. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands). Progress in Oceanography, 134: 330–342. doi: 10.1016/j.pocean.2015.03.003
    Blanchot J, André J M, Navarette C, et al. 2001. Picophytoplankton in the equatorial Pacific: vertical distributions in the warm pool and in the high nutrient low chlorophyll conditions. Deep Sea Research Part I: Oceanographic Research Papers, 48(1): 297–314. doi: 10.1016/S0967-0637(00)00063-7
    Cavan E L, Henson S A, Belcher A, et al. 2017. Role of zooplankton in determining the efficiency of the biological carbon pump. Biogeosciences, 14(1): 177–186. doi: 10.5194/bg-14-177-2017
    Clutter R I, Anraku M. 1968. Avoidance of samplers. In: Tranter D J, Fraser A J, eds. UNESCO Monographs on Oceanographic Methodology. 2. Zooplankton Sampling. Paris: UNESCO
    Cravatte S, Delcroix T, Zhang Dongxiao, et al. 2009. Observed freshening and warming of the western Pacific Warm Pool. Climate Dynamics, 33(4): 565–589. doi: 10.1007/s00382-009-0526-7
    Dai Luping, Li Chaolun, Tao Zhencheng, et al. 2017. Zooplankton abundance, biovolume and size spectra down to 3000 m depth in the western tropical North Pacific during autumn 2014. Deep Sea Research Part I: Oceanographic Research Papers, 121: 1–13. doi: 10.1016/j.dsr.2016.12.015
    Dam H G, Roman M R, Youngbluth M J. 1995. Downward export of respiratory carbon and dissolved inorganic nitrogen by diel-migrant mesozooplankton at the JGOFS Bermuda time-series station. Deep Sea Research Part I: Oceanographic Research Papers, 42(7): 1187–1197. doi: 10.1016/0967-0637(95)00048-B
    Folt C L, Burns C W. 1999. Biological drivers of zooplankton patchiness. Trends in Ecology & Evolution, 14(8): 300–305
    González H E, Smetacek V. 1994. The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material. Marine Ecology Progress Series, 113: 233–246. doi: 10.3354/meps113233
    Gorsky G, Chrétiennot-Dinet M J, Blanchot J, et al. 1999. Picoplankton and nanoplankton aggregation by appendicularians: fecal pellet contents of Megalocercus huxleyi in the equatorial Pacific. Journal of Geophysical Research: Oceans, 104(C2): 3381–3390. doi: 10.1029/98JC01850
    Hannides C C S, Drazen J C, Popp B N. 2015. Mesopelagic zooplankton metabolic demand in the North Pacific Subtropical Gyre. Limnology and Oceanography, 60(2): 419–428. doi: 10.1002/lno.10032
    Hannides C C S, Popp B N, Choy C A, et al. 2013. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: a stable isotope perspective. Limnology and Oceanography, 58(6): 1931–1946. doi: 10.4319/lo.2013.58.6.1931
    Hays G C. 2003. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia, 503(1–3): 163–170. doi: 10.1023/B:HYDR.0000008476.23617.b0
    Hénin C, Du Penhoat Y, Ioualalen M. 1998. Observations of sea surface salinity in the western Pacific fresh pool: large-scale changes in 1992–1995. Journal of Geophysical Research: Oceans, 103(C4): 7523–7536. doi: 10.1029/97JC01773
    Hwang J S, Dahms H U, Tseng L C, et al. 2007. Intrusions of the Kuroshio Current in the northern South China Sea affect copepod assemblages of the Luzon Strait. Journal of Experimental Marine Biology and Ecology, 352(1): 12–27. doi: 10.1016/j.jembe.2007.06.034
    Ikeda T. 1985. Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Marine Biology, 85(1): 1–11. doi: 10.1007/BF00396409
    Ishizaka J, Kiyosawa H, Ishida K, et al. 1994. Meridional distribution and carbon biomass of autotrophic picoplankton in the Central North Pacific Ocean during late northern summer 1990. Deep Sea Research Part I: Oceanographic Research Papers, 41(11–12): 1745–1766. doi: 10.1016/0967-0637(94)90071-X
    Isla A, Scharek R, Latasa M. 2015. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. Journal of Marine Systems, 143: 86–97. doi: 10.1016/j.jmarsys.2014.10.017
    Jónasdóttir S H, Visser A W, Richardson K, et al. 2015. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proceedings of the National Academy of Sciences of the United States of America, 112(39): 12122–12126. doi: 10.1073/pnas.1512110112
    Kaeriyama H, Ikeda T. 2002. Vertical distribution and population structure of the three dominant planktonic ostracods (Discoconchoecia pseudodiscophora, Orthoconchoecia haddoni and Metaconchoecia skogsbergi) in the Oyashio region, western North Pacific. Plankton Biology and Ecology, 49: 66–74
    Karl D M. 1999. A sea of change: biogeochemical variability in the north pacific subtropical gyre. Ecosystems, 2(3): 181–214. doi: 10.1007/s100219900068
    Kawahata H, Suzuki A, Ohta H. 2000. Export fluxes in the Western Pacific Warm Pool. Deep Sea Research Part I: Oceanographic Research Papers, 47(11): 2061–2091. doi: 10.1016/S0967-0637(00)00025-X
    Kitamura M, Kobari T, Honda M C, et al. 2016. Seasonal changes in the mesozooplankton biomass and community structure in subarctic and subtropical time-series stations in the western North Pacific. Journal of Oceanography, 72(3): 387–402. doi: 10.1007/s10872-015-0347-8
    Kobari T, Kitamura M, Minowa M, et al. 2013. Impacts of the wintertime mesozooplankton community to downward carbon flux in the subarctic and subtropical Pacific Oceans. Deep Sea Research Part I: Oceanographic Research Papers, 81: 78–88. doi: 10.1016/j.dsr.2013.07.003
    Kobari T, Nakamura R, Unno K, et al. 2016. Seasonal variability in carbon demand and flux by mesozooplankton communities at subarctic and subtropical sites in the western North Pacific Ocean. Journal of Oceanography, 72(3): 403–418. doi: 10.1007/s10872-015-0348-7
    Kobari T, Steinberg D K, Ueda A, et al. 2008. Impacts of ontogenetically migrating copepods on downward carbon flux in the western subarctic Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 55(14–15): 1648–1660. doi: 10.1016/j.dsr2.2008.04.016
    Koppelmann R, Böttger-Schnack R, Möbius J, et al. 2009. Trophic relationships of zooplankton in the eastern Mediterranean based on stable isotope measurements. Journal of Plankton Research, 31(6): 669–686. doi: 10.1093/plankt/fbp013
    Kremer P, Madin L P. 1992. Particle retention efficiency of salps. Journal of Plankton Research, 14(7): 1009–1015. doi: 10.1093/plankt/14.7.1009
    Lampitt R S, Wishner K F, Turley C M, et al. 1993. Marine snow studies in the Northeast Atlantic Ocean: distribution, composition and role as a food source for migrating plankton. Marine Biology, 116(4): 689–702. doi: 10.1007/BF00355486
    Landry M R, Al-Mutairi H, Selph K E, et al. 2001. Seasonal patterns of mesozooplankton abundance and biomass at Station ALOHA. Deep Sea Research Part II: Topical Studies in Oceanography, 48(8–9): 2037–2061. doi: 10.1016/S0967-0645(00)00172-7
    Le Borgne R, Barber R T, Delcroix T, et al. 2002. Pacific warm pool and divergence: temporal and zonal variations on the equator and their effects on the biological pump. Deep Sea Research Part II: Topical Studies in Oceanography, 49(13–14): 2471–2512. doi: 10.1016/S0967-0645(02)00045-0
    Le Borgne R, Rodier M. 1997. Net zooplankton and the biological pump: a comparison between the oligotrophic and mesotrophic equatorial Pacific. Deep Sea Research Part II: Topical Studies in Oceanography, 44(9–10): 2003–2023. doi: 10.1016/S0967-0645(97)00034-9
    Lebrato M, de Jesus Mendes P, Steinberg D K, et al. 2013. Jelly biomass sinking speed reveals a fast carbon export mechanism. Limnology and Oceanography, 58(3): 1113–1122. doi: 10.4319/lo.2013.58.3.1113
    Liu H, Nolla H A, Campbell L. 1997. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquatic Microbial Ecology, 12: 39–47. doi: 10.3354/ame012039
    López-Urrutia Á, Harris R P, Smith T. 2004. Predation by calanoid copepods on the appendicularian Oikopleura dioica. Limnology and Oceanography, 49(1): 303–307. doi: 10.4319/lo.2004.49.1.0303
    Lucas C H, Jones D O B, Hollyhead C J, et al. 2014. Gelatinous zooplankton biomass in the global oceans: geographic variation and environmental drivers. Global Ecology and Biogeography, 23(7): 701–714. doi: 10.1111/geb.12169
    Moriarty R, Buitenhuis E T, Le Quéré C, et al. 2013. Distribution of known macrozooplankton abundance and biomass in the global ocean. Earth System Science Data, 5(2): 241–257. doi: 10.5194/essd-5-241-2013
    Nakamura Y, Suzuki K, Suzuki S Y, et al. 1997. Production of Oikopleura dioica (Appendicularia) following a picoplankton ‘bloom’ in a eutrophic coastal area. Journal of Plankton Research, 19(1): 113–124. doi: 10.1093/plankt/19.1.113
    Nishibe Y, Takahashi K, Ichikawa T, et al. 2015. Degradation of discarded appendicularian houses by oncaeid copepods. Limnology and Oceanography, 60(3): 967–976. doi: 10.1002/lno.10061
    Nival P, Nival S. 1976. Particle retention efficiencies of an herbivorous copepod, Acartia clausi (adult and copepodite stages): effects on grazing. Limnology and Oceanography, 21(1): 24–38. doi: 10.4319/lo.1976.21.1.0024
    Ohman M D, Romagnan J B. 2016. Nonlinear effects of body size and optical attenuation on Diel Vertical Migration by zooplankton. Limnology and Oceanography, 61(2): 765–770. doi: 10.1002/lno.10251
    Ohtsuka S, Bottger-Schnack R, Okada M, et al. 1996. In situ feeding habits of Oncaea (Copepoda: Poecilostomatoida) from the upper 250 m of the central Red Sea, with special reference to consumption of appendicularian houses. Bulletin of the Plankton Society of Japan, 43(2): 89–105
    Parsons T R, Maita Y, Lalli C M. 1984. A Manual of Chemical & Biological Methods for Seawater Analysis. Oxford: Pergamon Press
    Pearre S Jr. 2003. Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences. Biological Reviews, 78(1): 1–79. doi: 10.1017/S146479310200595X
    Roman M R, Dam H G, Gauzens A L, et al. 1995. Zooplankton variability on the equator at 140°W during the JGOFS EqPac study. Deep Sea Research Part II: Topical Studies in Oceanography, 42(2–3): 673–693. doi: 10.1016/0967-0645(95)00025-L
    Sameoto D, Wiebe P, Runge J, et al. 2000. Collecting zooplankton. In: Harris R, Wiebe P, Lenz J, et al., eds. ICES Zooplankton Methodology Manual. London: Academic Press, 55–81
    Sato R, Ishibashi Y, Tanaka Y, et al. 2008. Productivity and grazing impact of Oikopleura dioica (Tunicata, Appendicularia) in Tokyo Bay. Journal of Plankton Research, 30(3): 299–309
    Schlitzer R. 2000. Applying the adjoint method for biogeochemical modeling: export of particulate organic matter in the world ocean. In: Kasibhatla P, Heimann M, Rayner P, et al., eds. Inverse Methods in Global Biogeochemical Cycles. Washington: American Geophysical Union, 107–124
    Silguero J M B, Robison B H. 2000. Seasonal abundance and vertical distribution of mesopelagic calycophoran siphonophores in Monterey Bay, CA. Journal of Plankton Research, 22(6): 1139–1153. doi: 10.1093/plankt/22.6.1139
    Sommer F, Hansen T, Feuchtmayr H, et al. 2003. Do calanoid copepods suppress appendicularians in the coastal ocean?. Journal of Plankton Research, 25(7): 869–871. doi: 10.1093/plankt/25.7.869
    Steinberg D K, Carlson C A, Bates N R, et al. 2000. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep Sea Research Part I: Oceanographic Research Papers, 47(1): 137–158. doi: 10.1016/S0967-0637(99)00052-7
    Steinberg D K, Cope J S, Wilson S E, et al. 2008a. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 55(14–15): 1615–1635. doi: 10.1016/j.dsr2.2008.04.025
    Steinberg D K, Landry M R. 2017. Zooplankton and the Ocean Carbon Cycle. Annual Review of Marine Science, 9: 413–444. doi: 10.1146/annurev-marine-010814-015924
    Steinberg D K, van Mooy B A S, Buesseler K O, et al. 2008b. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnology and Oceanography, 53(4): 1327–1338. doi: 10.4319/lo.2008.53.4.1327
    Sun Dong, Wang Chunsheng. 2017. Latitudinal distribution of zooplankton communities in the Western Pacific along 160°E during summer 2014. Journal of Marine Systems, 169: 52–60. doi: 10.1016/j.jmarsys.2017.01.011
    Suzuki K, Handa N, Kiyosawa H, et al. 1997. Temporal and spatial distribution of phytoplankton pigments in the Central Pacific Ocean along 175°E during the boreal summers of 1992 and 1993. Journal of Oceanography, 53(4): 383–396
    Svensen C, Nejstgaard J C. 2003. Is sedimentation of copepod faecal pellets determined by cyclopoids? Evidence from enclosed ecosystems. Journal of Plankton Research, 25(8): 917–926. doi: 10.1093/plankt/25.8.917
    Takahashi K, Kuwata A, Sugisaki H, et al. 2009. Downward carbon transport by diel vertical migration of the copepods Metridia pacifica and Metridia okhotensis in the Oyashio region of the western subarctic Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 56(10): 1777–1791. doi: 10.1016/j.dsr.2009.05.006
    Uye S I, Ichino S. 1995. Seasonal variations in abundance, size composition, biomass and production rate of Oikopleura dioica (Fol) (Tunicata: Appendicularia) in a temperate eutrophic inlet. Journal of Experimental Marine Biology and Ecology, 189(1–2): 1–11. doi: 10.1016/0022-0981(95)00004-B
    Vannier J, Abe K, Ikuta K. 1998. Feeding in myodocopid ostracods: functional morphology and laboratory observations from videos. Marine Biology, 132(3): 391–408. doi: 10.1007/s002270050406
    Wilson S E, Steinberg D K, Buesseler K O. 2008. Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 55(14–15): 1636–1647. doi: 10.1016/j.dsr2.2008.04.019
    Yamaguchi A, Matsuno K, Homma T. 2015. Spatial changes in the vertical distribution of calanoid copepods down to great depths in the North Pacific. Zoological Studies, 54(1): 13. doi: 10.1186/s40555-014-0091-6
    Yamaguchi A, Watanabe Y, Ishida H, et al. 2002. Community and trophic structures of pelagic copepods down to greater depths in the western subarctic Pacific (WEST-COSMIC). Deep Sea Research Part I: Oceanographic Research Papers, 49(6): 1007–1025. doi: 10.1016/S0967-0637(02)00008-0
    Yamaguchi A, Watanabe Y, Ishida H, et al. 2004. Latitudinal differences in the planktonic biomass and community structure down to the greater depths in the Western North Pacific. Journal of Oceanography, 60(4): 773–787. doi: 10.1007/s10872-004-5770-1
    Yamaguchi A, Watanabe Y, Ishida H, et al. 2005. Biomass and chemical composition of net-plankton down to greater depths (0-5800 m) in the western North Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 52(2): 341–353. doi: 10.1016/j.dsr.2004.09.007
    Zhang Dongsheng, Wang Chunsheng, Liu Zhensheng, et al. 2012. Spatial and temporal variability and size fractionation of chlorophyll a in the tropical and subtropical Pacific Ocean. Acta Oceanologica Sinica, 31(3): 120–131. doi: 10.1007/s13131-012-0212-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(7)

    Article Metrics

    Article views (357) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return