HE Hailun, XU Yao. Wind-wave hindcast in the Yellow Sea and the Bohai Sea from the year 1988 to 2002[J]. Acta Oceanologica Sinica, 2016, 35(3): 46-53. doi: 10.1007/s13131-015-0786-5
Citation: GAO Dong, LIU Yongxin, MENG Junmin, JIA Yongjun, FAN Chenqing. Estimating significant wave height from SAR imagery based on an SVM regression model[J]. Acta Oceanologica Sinica, 2018, 37(3): 103-110. doi: 10.1007/s13131-018-1203-7

Estimating significant wave height from SAR imagery based on an SVM regression model

doi: 10.1007/s13131-018-1203-7
  • Received Date: 2017-01-17
  • A new method for estimating significant wave height (SWH) from advanced synthetic aperture radar (ASAR) wave mode data based on a support vector machine (SVM) regression model is presented. The model is established based on a nonlinear relationship between σ0, the variance of the normalized SAR image, SAR image spectrum spectral decomposition parameters and ocean wave SWH. The feature parameters of the SAR images are the input parameters of the SVM regression model, and the SWH provided by the European Centre for Medium-range Weather Forecasts (ECMWF) is the output parameter. On the basis of ASAR matching data set, a particle swarm optimization (PSO) algorithm is used to optimize the input kernel parameters of the SVM regression model and to establish the SVM model. The SWH estimation results yielded by this model are compared with the ECMWF reanalysis data and the buoy data. The RMSE values of the SWH are 0.34 and 0.48 m, and the correlation coefficient is 0.94 and 0.81, respectively. The results show that the SVM regression model is an effective method for estimating the SWH from the SAR data. The advantage of this model is that SAR data may serve as an independent data source for retrieving the SWH, which can avoid the complicated solution process associated with wave spectra.
  • Alpers W, Brümmer B. 1994. Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERs-1 satellite. Journal of Geophysical Research, 99(C6): 12613-12621
    Behravan I, Dehghantanha O, Zahiri S H, et al. 2016. An optimal SVM with feature selection using multiobjective PSO. Journal of Optimization, 2016: 6305043
    Elbisy M S. 2015. Support vector machine and regression analysis to predict the field hydraulic conductivity of sandy soil. KSCE Journal of Civil Engineering, 19(7): 2307-2316
    Fadel S, Ghoniemy S, Abdallah M, et al. 2016. Investigating the effect of different kernel functions on the performance of SVM for recognizing Arabic characters. International Journal of Advanced Computer Science and Applications, 7(1): 446-450
    Gade M, Alpers W, Hühnerfuss H, et al. 1998. Imaging of biogenic and anthropogenic ocean surface films by the multifrequency/multipolarization SIR-C/X-SAR. Journal of Geophysical Research, 103(C9): 18851-18866
    Hasselmann S, Brüning C, Hasselmann K, et al. 1996. An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra. Journal of Geophysical Research, 101(C7): 16615-16629
    Hasselmann K, Hasselmann S. 1991. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. Journal of Geophysical Research, 96(C6): 10713-10729
    Kennedy J, Eberhart R. 1995. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks. Perth, WA: IEEE, 1942-1948
    Li Xiaoming, Lehner S, Bruns T. 2011. Ocean wave integral parameter measurements using envisat ASAR wave mode data. IEEE Transactions on Geoscience and Remote Sensing, 49(1): 155-174
    Mastenbroek C, de Valk C F. 2000. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar. Journal of Geophysical Research, 105(C2): 3497-3516
    Melsheimer C, Alpers W, Gade M. 1998. Investigation of multifrequency/multipolarization radar signatures of rain cells over the ocean using SIR-C/X-SAR data. Journal of Geophysical Research, 103(C9): 18867-18884
    Nisha M G, Pillai G N. 2013. Nonlinear model predictive control with relevance vector regression and particle swarm optimization. Journal of Control Theory and Applications, 11(4): 563-569
    Park K A, Woo H J, Lee E Y, et al. 2013. Validation of significant wave height from satellite altimeter in the seas around Korea and error characteristics. Korean Journal of Remote Sensing, 29(6): 631-644
    Schulz-Stellenfleth J, König T, Lehner S. 2007. An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. Journal of Geophysical Research, 112(C3), doi: 10.1029/2006JC003970
    Schulz-Stellenfleth J, König T, Lehner S. 2006. Retrieval of integral ocean wave parameters from SAR data using an empirical approach. In: Proceedings of SEASAR 2006. 1–6
    Schulz-Stellenfleth J, Lehner S. 2004. Measurement of 2-D sea surface elevation fields using complex synthetic aperture radar data. IEEE Transactions on Geoscience and Remote Sensing, 42(6): 1149-1160
    Singh G, Kumar V, Vekataraman G, et al. 2007. Snow porosity estimation using advanced synthetic aperture radar single look complex data analysis and its effects on backscattering coefficient. Journal of Applied Remote Sensing, 1(1): 013522
    Suganyadevi M V, Babulal C K, Kalyani S. 2016. Assessment of voltage stability margin by comparing various support vector regression models. Soft Computing, 20(2): 807-818
    Sun Jian, Guan Changlong. 2006. Parameterized first-guess spectrum method for retrieving directional spectrum of swell-dominated waves and huge waves from SAR images. Chinese Journal of Oceanology and Limnology, 24(1): 12-20
    Vapnik V N. 1998. Statistical Learning Theory. New York: Wiley
    Wang Cheng. 2014. Optimization of SVM method with RBF kernel. Applied Mechanics and Materials, 496-500: 2306-2310
    Wang Long, Bai Yanping. 2014. Research on prediction of air quality index based on NARX and SVM. Applied Mechanics and Materials, 602-605: 3580-3584
    Xu Qifa, Jiang Cuixia, He Yaoyao. 2016. An exponentially weighted quantile regression via SVM with application to estimating multiperiod VaR. Statistical Methods & Applications, 25(2): 285-320
  • Relative Articles

  • Cited by

    Periodical cited type(14)

    1. R. Rachmayani, N. S. Ningsih, I. Ardiansyah. The effect of reclamation on the significant wave height changes in Jakarta Bay during Hagibis and Mitag typhoons. Journal of Ocean Engineering and Marine Energy, 2023, 9(1): 165. doi:10.1007/s40722-022-00249-8
    2. Ping Wang, Mengke Wang, Liming Zuo, et al. Risk assessment of marine disasters in fishing ports of Qinhuangdao, China. Regional Studies in Marine Science, 2023, 60: 102832. doi:10.1016/j.rsma.2023.102832
    3. Jingwei Gu, Xiuzhong Li, Yijun He. A speckle noise suppression method based on surface waves investigation and monitoring data. Acta Oceanologica Sinica, 2023, 42(1): 131. doi:10.1007/s13131-022-2103-4
    4. Yuyi Hu, Weizeng Shao, Yongliang Wei, et al. Analysis of Typhoon-Induced Waves along Typhoon Tracks in the Western North Pacific Ocean, 1998–2017. Journal of Marine Science and Engineering, 2020, 8(7): 521. doi:10.3390/jmse8070521
    5. Chengcheng Qian, Haoyu Jiang, Xuan Wang, et al. Climatology of Wind-Seas and Swells in the China Seas from Wave Hindcast. Journal of Ocean University of China, 2020, 19(1): 90. doi:10.1007/s11802-020-3924-4
    6. Maosheng Ye, Shuang Li, Zhongshui Zou, et al. Tower-based observation of air-sea momentum flux: comparisons between onshore and offshore winds. Acta Oceanologica Sinica, 2020, 39(7): 61. doi:10.1007/s13131-020-1626-9
    7. Yuyi Hu, Weizeng Shao, Jian Shi, et al. Analysis of the typhoon wave distribution simulated in WAVEWATCH- III model in the context of Kuroshio and wind-induced current. Journal of Oceanology and Limnology, 2020, 38(6): 1692. doi:10.1007/s00343-019-9133-6
    8. Sheng Dong, Yijie Gong, Zhifeng Wang, et al. Wind and wave energy resources assessment around the Yangtze River Delta. Ocean Engineering, 2019, 182: 75. doi:10.1016/j.oceaneng.2019.04.030
    9. R.O. Cecilio, S.R. Dillenburg. An ocean wind-wave climatology for the Southern Brazilian Shelf. Part II: Variability in space and time. Dynamics of Atmospheres and Oceans, 2019, 88: 101103. doi:10.1016/j.dynatmoce.2019.101103
    10. Ning Wang, Yijun Hou, Shuiqing Li, et al. Numerical simulation and preliminary analysis of typhoon waves during three typhoons in the Yellow Sea and East China Sea. Journal of Oceanology and Limnology, 2019, 37(6): 1805. doi:10.1007/s00343-019-8260-4
    11. Weizeng Shao, Yexin Sheng, Huan Li, et al. Analysis of Wave Distribution Simulated by WAVEWATCH-III Model in Typhoons Passing Beibu Gulf, China. Atmosphere, 2018, 9(7): 265. doi:10.3390/atmos9070265
    12. Hailun He, Jinbao Song, Yefei Bai, et al. Climate and extrema of ocean waves in the East China Sea. Science China Earth Sciences, 2018, 61(7): 980. doi:10.1007/s11430-017-9156-7
    13. P.R. Shanas, V.M. Aboobacker, Alaa M.A. Albarakati, et al. Climate driven variability of wind-waves in the Red Sea. Ocean Modelling, 2017, 119: 105. doi:10.1016/j.ocemod.2017.10.001
    14. Yao Xu, Fan Bi, Jinbao Song, et al. The temporal and spatial variations in the Pacific wind and wave fields for the period 2002–2011. Acta Oceanologica Sinica, 2017, 36(3): 26. doi:10.1007/s13131-017-1039-6

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.7 %FULLTEXT: 28.7 %META: 71.3 %META: 71.3 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 0.7 %其他: 0.7 %China: 41.8 %China: 41.8 %Estonia: 0.7 %Estonia: 0.7 %France: 3.4 %France: 3.4 %Korea Republic of: 0.7 %Korea Republic of: 0.7 %Malaysia: 0.7 %Malaysia: 0.7 %Russian Federation: 3.7 %Russian Federation: 3.7 %Singapore: 0.2 %Singapore: 0.2 %United States: 48.0 %United States: 48.0 %其他ChinaEstoniaFranceKorea Republic ofMalaysiaRussian FederationSingaporeUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (884) PDF downloads(728) Cited by(14)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return