Citation: | ZHU Guoping, ZHANG Haiting, SONG Qi, YANG Yang, WANG Shaoqin, YANG Qingyuan. Inferring trophic variation for Antarctic krill (Euphausia superba) in the Antarctic Peninsula from the austral fall to early winter using stable isotope analysis[J]. Acta Oceanologica Sinica, 2018, 37(6): 90-95. doi: 10.1007/s13131-018-1176-6 |
Agersted M D, Bode A, Nielsen T G. 2014. Trophic position of coexisting krill species:a stable isotope approach. Marine Ecology Progress Series, 516:139-151
|
Anderson O R J, Phillips R A, McDonald R A, et al. 2009. Influence of trophic position and foraging range on mercury levels within a seabird community. Marine Ecology Progress Series, 375:277-288
|
Atkinson A, Meyer B, Stübing D, et al. 2002. Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter:Ⅱ. juveniles and adults. limnology and oceanography, 47(6):953-966
|
Atkinson A, Siegel V, Pakhomov E A, et al. 2009. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Research Part I:Oceanographic Research Papers, 56(5):727-740
|
Atkinson A, Siegel V, Pakhomov E, et al. 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature, 432(7013):100-103
|
Barkley E. 1940. Nahrung und Filterapparat des walkrebschens Euphausia superba Dana. Zeitschrift für Fischerei und deren Hilfswissen-schaften, 1:65-156
|
Corbisier T N, Petti M A V, Skowronski R S P, et al. 2004. Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctic):δ13C stable-isotope analysis. Polar Biology, 27(2):75-82
|
Croxall J P, Reid K, Prince P A. 1999. Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill. Marine Ecology Progress Series, 177:115-131
|
Dunton K H. 2001. δ15N and δ13C Measurements of Antarctic peninsula fauna:trophic relationships and assimilation of benthic seaweeds. American Zoologist, 41(1):99-112
|
Everson I. 2000. Role of krill in marine food webs:the Southern Ocean. In:Everson I, ed. Krill:Biology, Ecology and Fisheries. Oxford:Blackwell Science, 194-201
|
Fischer G. 1991. Stable carbon isotope ratios of plankton carbon and sinking organic matter from the Atlantic sector of the Southern Ocean. Marine Chemistry, 35(1-4):581-596
|
France R L. 1995. Carbon-13 enrichment in benthic compared to planktonic algae:food web implications. Marine Ecology Progress Series, 124:307-312
|
Frazer T K. 1996. Stable isotope composition (δ13C and δ15N) of larval krill, Euphausia superba, and two of its potential food sources in winter. Journal of Plankton Research, 18(8):1413-1426
|
Fry B, Sherr E B. 1989. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. In:Rundel P W, Ehleringer J R, Nagy K A, eds. Stable Isotopes in Ecological Research. Ecological Studies (Analysis and Synthesis). New York, NY:Springer, 196-229
|
Hobson K A, Welch H E. 1992. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Marine Ecology Progress Series, 84:9-18
|
Hobson K A, Clark R G. 1992. Assessing avian diets using stable isotopes I:turnover of C in tissues. The Condor, 94(1):181-188
|
Hopkins T L. 1985. Food web of an Antarctic midwater ecosystem. Marine Biology, 89(2):197-212
|
Huntley M E, Zhou M. 2004. Influence of animals on turbulence in the sea. Marine Ecology Progress Series, 273:65-79
|
Jia Z N, Swadling K M, Meiners K M, et al. 2016. The zooplankton food web under East Antarctic pack ice—A stable isotope study. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 131:189-202
|
Kils U. 1983. Swimming and feeding of Antarctic krill, Euphausia superba—some outstanding energetic and dynamics, some unique morphological details. Berichte zur Polarforschung, 4:130-155
|
Ko A R, Yang E J, Kim M S, et al. 2016. Trophodynamics of euphausiids in the Amundsen Sea during the austral summer by fatty acid and stable isotopic signatures. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 123:78-85
|
Kokubun N, Choy E J, Kim J H, et al. 2015. Isotopic values of Antarctic krill in relation to foraging habitat of penguins. Ornithological Science, 14(1):13-20
|
Makarov R R, Denys C J. 1981. Stages of sexual maturity of Euphausia superba Dana. BIOMASS Handbook. v 11. Cambridge:Scientific Committee on Antarctic Research, 1-13
|
Martin D L, Ross R M, Quetin L B, et al. 2006. Molecular approach (PCR-DGGE) to diet analysis in young Antarctic krill Euphausia superba. Marine Ecology Progress Series, 319:155-165
|
Meyer B, Auerswald L, Siegel V, et al. 2010. Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea. Marine Ecology Progress Series, 398:1-18
|
Michener R H, Schell D M. 1994. Stable isotope ratios as tracers in marine aquatic food webs. In:Lajtha K, Michener R H, eds. Stable Isotopes in Ecology and Environmental Science. Oxford, UK:Blackwell Publishing Ltd, 138-158
|
Mordy C W, Penny D M, Sullivan C W. 1995. Spatial distribution of bacterioplankton biomass and production in the marginal ice-edge zone of the Weddell-Scotia Sea during austral winter. Marine Ecology Progress Series, 122:9-19
|
Nicol S, Foster J. 2016. The fishery for Antarctic krill:its current status and management regime. In:Siegel V, ed. Biology and Ecology of Antarctic Krill. Cham:Springer, 387-421
|
Nishino Y, Kawamura A. 1996. Food habits of the Antarctic krill Euphausia superba Dana in South Shetland waters. Bulletin of Plankton Society of Japan, 43(1):9-19
|
Polito M J, Goebel M E. 2010. Investigating the use of stable isotope analysis of milk to infer seasonal trends in the diets and foraging habitats of female Antarctic fur seals. Journal of Experimental Marine Biology and Ecology, 395(1–2):1-9
|
Polito M J, Reiss C S, Trivelpiece W Z, et al. 2013. Stable isotopes identify an ontogenetic niche expansion in Antarctic krill (Euphausia superba) from the South Shetland Islands, Antarctica. Mar Biol, 160(6):1311-1323
|
Schmidt K, Atkinson A, Stübing D, et al. 2003. Trophic relationships among Southern Ocean copepods and krill:Some uses and limitations of a stable isotope approach. Limnology and Oceanography, 48(1):277-289
|
Schmidt K, McClelland J W, Mente E, et al. 2004. Trophic-level interpretation based on δ15N values:implications of tissue-specific fractionation and amino acid composition. Marine Ecology Progress Series, 266:43-58
|
Schmidt K, Atkinson A, Petzke K J, et al. 2006. Protozoans as a food source for Antarctic krill, Euphausia superba:complementary insights from stomach content, fatty acids, and stable isotopes. Limnology and Oceanography, 51(5):2409-2427
|
Schmidt K, Atkinson A. 2016. Feeding and food processing in Antarctic krill (Euphausia superba Dana). In:Siegel V, ed. Biology and Ecology of Antarctic krill. Switzerland:Springer, 175-224
|
Stowasser G, Atkinson A, McGill R A R, et al. 2012. Food web dynamics in the Scotia Sea in summer:a stable isotope study. Deep-Sea Research Part Ⅱ, 59:208-221
|
Trivelpiece W Z, Hinke J T, Miller A K, et al. 2011. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proceedings of the National Academy Science of the United States of America, 108(18):7625-7628
|
Vander Zanden M J, Rasmussen J B. 2001. Variation in δ15N and δ13C trophic fractionation:implications for aquatic food web studies. Limnology and Oceanography, 46(8):2061-2066
|
Wada E, Terazaki M, Kabaya Y, et al. 1987. 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep Sea Research Part A. Oceanographic Research Papers, 34(5-6):829-841
|