Citation: | ZHOU Zhiyuan, LIN Jian, ZHANG Fan. Modeling of normal faulting in the subducting plates of the Tonga, Japan, Izu-Bonin and Mariana Trenches: implications for near-trench plate weakening[J]. Acta Oceanologica Sinica, 2018, 37(11): 53-60. doi: 10.1007/s13131-018-1146-z |
Beavan J, Wang X, Holden C, et al. 2010. Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009. Nature, 466(7309):959-963, doi: 10.1038/nature09292
|
Behn M D, Ito G. 2008. Magmatic and tectonic extension at mid-ocean ridges:1. Controls on fault characteristics. Geochemistry, Geophysics, Geosystems, 9(8):Q08O10
|
Buck W R, Lavier L L, Poliakov A N B. 2005. Modes of faulting at mid-ocean ridges. Nature, 434(7034):719-723, doi: 10.1038/nature03358
|
Buck W R, Poliakov A N B. 1998. Abyssal hills formed by stretching oceanic lithosphere. Nature, 392(6673):272-275, doi: 10.1038/32636
|
Christensen D H, Ruff L J. 1983. Outer-rise earthquakes and seismic coupling. Geophysical Research Letters, 10(8):697-700, doi: 10.1029/GL010i008p00697
|
Cundall P A. 1989. Numerical experiments on localization in frictional materials. Ingenieur-archiv, 59(2):148-159, doi: 10.1007/BF00538368
|
De Bremaecker J C. 1977. Is the oceanic lithosphere elastic or viscous? Journal of Geophysical Research, 82:2001-2004, doi: 10.1029/JB082i014p02001
|
Emry E L, Wiens D A. 2015. Incoming plate faulting in the northern and western Pacific and implications for subduction zone water budgets. Earth and Planetary Science Letters, 414:176-186, doi: 10.1016/j.epsl.2014.12.042
|
Faccenda M. 2014. Water in the slab:A trilogy. Tectonophysics, 614(3):1-30
|
Garcia-Castellanos D, Torne M, Fernàndez M. 2000. Slab pull effects from a flexural analysis of the Tonga and Kermadec Trenches (Pacific plate). Geophysical Journal International, 141(2):479-484, doi: 10.1046/j.1365-246x.2000.00096.x
|
Grevemeyer I, Kaul N, Diaz-Naveas J L, et al. 2005. Heat flow and bending-related faulting at subduction trenches:Case studies offshore of Nicaragua and Central Chile. Earth and Planetary Science Letters, 236(1-2):238-248, doi: 10.1016/j.epsl.2005.04.048
|
Grevemeyer I, Ranero C R, Flueh E R, et al. 2007. Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench. Earth and Planetary Science Letters, 258(3-4):528-542, doi: 10.1016/j.epsl.2007.04.013
|
Han Shuoshuo, Carbotte S M, Canales J P, et al. 2016. Seismic reflection imaging of the Juan de Fuca plate from ridge to trench:New constraints on the distribution of faulting and evolution of the crust prior to subduction. Journal of Geophysical Research, 121(3):1849-1872
|
Hilde T W C. 1983. Sediment subduction versus accretion around the pacific. Tectonophysics, 99(2-4):381-397, doi: 10.1016/0040-1951(83)90114-2
|
Hunter J, Watts A B. 2016. Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches. Geophysical Journal International, 207(1):288-316, doi: 10.1093/gji/ggw275
|
Jaeger J C, Cook N G. 1979. Fundamentals of rock mechanics. London:Chapman and Hall, 513
|
Kanamori H. 1971. Seismological evidence for a lithospheric normal faulting-the Sanriku earthquake of 1933. Physics of the Earth and Planetary Interiors, 4(4):289-300, doi: 10.1016/0031-9201(71)90013-6
|
Kao H, Chen W P. 1996. Seismicity in the outer rise-forearc region and configuration of the subducting lithosphere with special reference to the Japan Trench. Journal of Geophysical Research:Solid Earth, 101(B12):27811-27831, doi: 10.1029/96JB01760
|
Key K, Constable S, Matsuno T, et al. 2012. Electromagnetic detection of plate hydration due to bending faults at the Middle America Trench. Earth and Planetary Science Letters, 351:45-53
|
Kobayashi K, Nakanishi M, Tamaki K, et al. 1998. Outer slope faulting associated with the western Kuril and Japan trenches. Geophysical Journal International, 134(2):356-372, doi: 10.1046/j.1365-246x.1998.00569.x
|
Lavier L L, Buck W R, Poliakov A N B. 1999. Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults. Geology, 27(12):1127-1130, doi: 2.3.CO;2>10.1130/0091-7613(1999)027<1127:SCRHMF>2.3.CO;2
|
Lavier L L, Buck W R, Poliakov A N B. 2000. Factors controlling normal fault offset in an ideal brittle layer. Journal of Geophysical Research:Solid Earth, 105(B10):23431-23442, doi: 10.1029/2000JB900108
|
Lay T, Ammon C J, Kanamori H, et al. 2010. The 2009 Samoa-Tonga great earthquake triggered doublet. Nature, 466(7309):964-968, doi: 10.1038/nature09214
|
Lefeldt M, Ranero C R, Grevemeyer I. 2012. Seismic evidence of tectonic control on the depth of water influx into incoming oceanic plates at subduction trenches. Geochemistry, Geophysics, Geosystems, 13(5):Q05013
|
Masson D G. 1991. Fault patterns at outer trench walls. Marine Geophysical Researches, 13(3):209-225, doi: 10.1007/BF00369150
|
Melosh H J. 1978. Dynamic support of the outer rise. Geophysical Research Letters, 5(5):321-324, doi: 10.1029/GL005i005p00321
|
Naliboff J B, Billen M I, Gerya T, et al. 2013. Dynamics of outer rise faulting in oceanic-continental subduction systems. Geochemistry, Geophysics, Geosystems, 14(7):2310-2327, doi: 10.1002/ggge.20155
|
Parsons B, Molnar P. 1976. The origin of outer topographic rises associated with trenches. Geophysical Journal International, 45(3):707-712, doi: 10.1111/j.1365-246X.1976.tb06919.x
|
Poliakov A N B, Buck W R. 1998. Mechanics of stretching elastic-plastic-viscous layers:Applications to slow-spreading mid-ocean ridges. In:Buck W R, Delaney P T, Karson J A, et al, eds. Faulting and Magmatism at Mid-Ocean Ridges. Washington, D.C.:American Geophysical Union, 305-323
|
Poliakov A N B, Cundall P A, Podladchikov Y Y, et al. 1993. An explicit inertial method for the simulation of viscoelastic flow:An evaluation of elastic effects on diapiric flow in two-and three-layers models. In:Stone D B, Runcorn S K, eds. Flow and Creep in the Solar System:Observations, Modeling and Theory. Dordrecht:Springer, 175-195
|
Ranero C R, Morgan J P, McIntosh K, et al. 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425(6956):367-373, doi: 10.1038/nature01961
|
Ranero C, Sallares V. 2004. Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile Trench. Geology, 32(7):549-552, doi: 10.1130/G20379.1
|
Ranero C R, Villaseñor A, Morgan J P, et al. 2005. Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochemistry, Geophysics, Geosystems, 6(12):Q12002
|
Ryan W B F, Carbotte S M, Coplan J O, et al. 2009. Global multi-resolution topography synthesis. Geochemistry, Geophysics, Geosystems, 10(3):Q03014
|
Supak S, Bohnenstiehl D R, Buck W R. 2006. Flexing is not stretching:An analogue study of flexure-induced fault populations. Earth and Planetary Science Letters, 246(1-2):125-137, doi: 10.1016/j.epsl.2006.03.028
|
Tilmann F J, Grevemeyer I, Flueh E R, et al. 2008. Seismicity in the outer rise offshore southern Chile:Indication of fluid effects in crust and mantle. Earth and Planetary Science Letters, 269(1-2):41-55, doi: 10.1016/j.epsl.2008.01.044
|
Turcotte D L, Schubert G. 2014. Geodynamics. 3rd ed. Cambridge:Cambridge University Press, 156-158
|
Zhang Fan, Lin Jian, Zhan Wenhuan. 2014. Variations in oceanic plate bending along the Mariana Trench. Earth and Planetary Science Letters, 401:206-214, doi: 10.1016/j.epsl.2014.05.032
|
Zhou Zhiyuan, Lin Jian. 2018. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench, Tectonophysics, 734-735, 59-68, doi: 10.1016/j.tecto.2018.04.008
|
Zhou Zhiyuan, Lin Jian, Behn M D, et al. 2015. Mechanism for normal faulting in the subducting plate at the Mariana Trench. Geophysical Research Letters, 42(11):4309-4317, doi: 10.1002/2015GL063917
|
1. | Yuhao Chen, Xing Jian. Spatial heterogeneity of sediments on a topographically diverse descending plate at convergent margins: An example from the outer slope of the Mariana Trench. Marine Geology, 2025, 479: 107430. doi:10.1016/j.margeo.2024.107430 | |
2. | Zhezhe Lu, Jiabiao Li, Chun-Feng Li, et al. Tectonic controls on effective elastic thickness of lithospheres around the Southeast Asian subduction zones. Tectonophysics, 2023, 863: 229994. doi:10.1016/j.tecto.2023.229994 | |
3. | Seok-Hyeon Do, Byung-Dal So, Young-Gyun Kim, et al. Lithospheric strength inferred from modeling of buckling structure: Implications for stress state of the East Sea (Japan Sea). Tectonophysics, 2023, 858: 229859. doi:10.1016/j.tecto.2023.229859 | |
4. | Jiangyang Zhang, Fan Zhang, Hongfeng Yang, et al. The effects of plateau subduction on plate bending, stress and intraplate seismicity. Terra Nova, 2022, 34(2): 113. doi:10.1111/ter.12570 | |
5. | Zilong Ling, Lihong Zhao, Zhaocai Wu, et al. Effective Elastic Thickness of the Lithosphere in the Mariana Subduction Zone and Surrounding Regions and Its Implications for Their Tectonics. Journal of Ocean University of China, 2022, 21(4): 827. doi:10.1007/s11802-022-5090-3 | |
6. | Wei Gong, Xiaodian Jiang, Junhui Xing, et al. Heterogeneous outer‐rise seismicity within the Izu–Bonin subduction zone and its tectonic implications. Geological Journal, 2021, 56(9): 4699. doi:10.1002/gj.4206 | |
7. | Jiangyang Zhang, Fan Zhang, Jian Lin, et al. Yield failure of the subducting plate at the Mariana Trench. Tectonophysics, 2021, 814: 228944. doi:10.1016/j.tecto.2021.228944 | |
8. | Fan Zhang, Jian Lin, Zhiyuan Zhou. Flexural bending curvature and yield zone of subducting plates. International Geology Review, 2020, 62(7-8): 859. doi:10.1080/00206814.2019.1671237 | |
9. | Jiangyang Zhang, Min Xu, Zhen Sun. Lithospheric flexural modelling of the seaward and trenchward of the subducting oceanic plates. International Geology Review, 2020, 62(7-8): 908. doi:10.1080/00206814.2018.1550729 | |
10. | Shoujin Liu, Jian Lin, Zhiyuan Zhou, et al. Large along-axis variations in magma supply and tectonism of the Southeast Indian Ridge near the Australian-Antarctic Discordance. Acta Oceanologica Sinica, 2020, 39(1): 118. doi:10.1007/s13131-019-1518-z |