LI Xiaohui, ZENG Zhigang, CHEN Shuai, MA Yao, YANG Huixin, ZHANG Yuxiang. Geochemical and Sr-Nd-Pb isotopic compositions of volcanic rocks from the Iheya Ridge, the middle Okinawa Trough: implications for petrogenesis and a mantle source[J]. Acta Oceanologica Sinica, 2018, 37(1): 73-88. doi: 10.1007/s13131-017-1118-8
Citation: LI Xiaohui, ZENG Zhigang, CHEN Shuai, MA Yao, YANG Huixin, ZHANG Yuxiang. Geochemical and Sr-Nd-Pb isotopic compositions of volcanic rocks from the Iheya Ridge, the middle Okinawa Trough: implications for petrogenesis and a mantle source[J]. Acta Oceanologica Sinica, 2018, 37(1): 73-88. doi: 10.1007/s13131-017-1118-8

Geochemical and Sr-Nd-Pb isotopic compositions of volcanic rocks from the Iheya Ridge, the middle Okinawa Trough: implications for petrogenesis and a mantle source

doi: 10.1007/s13131-017-1118-8
  • Received Date: 2017-06-19
  • As an active back-arc basin, the Okinawa Trough is located in the southeastern region of the East China Sea shelf and is strongly influenced by the subduction of the Philippine Sea Plate. Major element, trace element and Sr-Nd-Pb isotopic composition data are presented for volcanic rocks from the Iheya Ridge (IR), the middle Okinawa Trough. The IR rocks record large variations in major elements and range from basalts to rhyolites. Similar trace element distribution characteristics together with small variations in 87Sr/86Sr (0.703 862-0.704 884), 144Nd/143Nd (0.512 763-0.512 880) and Pb isotopic ratios, demonstrate that the IR rocks are derived from a similar magma source. The fractional crystallization of olivine, clinopyroxene, plagioclase, and amphibole, as well as accessory minerals, can reasonably explain the compositional variations of these IR rocks. The simulations suggest that approximately 60% and 75% fractionation of an evolved basaltic magma can produce trace element compositions similar to those of the intermediate rocks and acid rocks, respectively. The analysis of their Sr-Nd-Pb isotopic content ratios suggest that the source of the rocks from the IR is close to the depleted mantle (DM) but extends to the enriched mantle (EMII), indicating that the mantle source of these rocks is a mixture between the DM and EMII end members. The simulations show that the source of the IR volcanic rocks can be best interpreted as the result of the mixing of approximately 0.8%-2.0% subduction sediment components and 98.0%-99.2% mantle-derived melts.
  • loading
  • Allègre C J, Hamelin B, Provost A, et al. 1987. Topology in isotopic multispace and origin of mantle chemical heterogeneities. Earth and Planetary Science Letters, 81(4): 319-337
    Arth J G. 1976. Behaviour of trace elements during magmatic processes—A summary of theoretical models and their applications. Journal of Research of the U.S. Geological Survey, 4(1): 41-47
    Bacon C R, Druitt T H. 1988. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98(2): 224-256
    Brouxel M, Lapierre H, Michard A, et al. 1987. The deep layers of a Paleozoic arc: geochemistry of the Copley-Balaklala series, northern California. Earth and Planetary Science Letters, 85(4): 386-400
    Cai Yachun, Fan Hongrui, Santosh M, et al. 2014. Silicate melt inclusions in clinopyroxene phenocrysts from mafic dikes in the eastern North china Craton: constraints on melt evolution. Journal of Asian Earth Sciences, 97: 150-168
    Christiansen R L. 1984. Yellowstone magmatic evolution: its bearing on understanding large-volume explosive volcanism. In: Explosive Volcanism: Inception, Evolution, and Hazards. Washington, DC: National Academy Press, 84-95
    Chun Minghao, Yu Zenghui, Zhai Shikui. 2015. The geochemistry and geological significances of basalts from Carlsberg Ridge in Indian Ocean. Haiyang Xuebao (in Chinese), 37(8): 47-62
    Class C, Miller D M, Goldstein S L, et al. 2000. Distinguishing melt and fluid subduction components in Umnak volcanics, Aleutian arc. Geochemistry, Geophysics, Geosystems, 1(6): 1004
    Davies G R, MacDonald R. 1987. Crustal influences in the petrogenesis of the Naivasha basalt-comendite complex: combined trace element and Sr-Nd-Pb isotope constraints. Journal of Petrology, 28(6): 1009-1031
    Doe B R, Leeman W P, Christiansen R L, et al. 1982. Lead and strontium isotopes and related trace elements as genetic tracers in the Upper Cenozoic rhyolite-basalt association of the Yellowstone Plateau Volcanic Field. Journal of Geophysical Research: Atmospheres, 87(B6): 4785-4806
    Duan Xianzhe, Sun He, Yang Wei, et al. 2014. Melt-peridotite interaction in the shallow lithospheric mantle of the North China Craton: evidence from melt inclusions in the quartz-bearing orthopyroxene-rich websterite from Hannuoba. International Geology Review, 56(4): 448-472
    Dunn T, Sen C. 1994. Mineral/matrix partition-coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: a combined analytical and experimental study. Geochimica et Cosmochimica Acta, 58(2): 717-733,, doi: 10.1016/0016-7037(94)90501-0
    Elliott T, Plank T, Zindler A, et al. 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research: Atmospheres, 102(B7): 14991-15019
    Ewart A, Griffin W L. 1994. Application of proton-microprobe data to trace-element partitioning in volcanic-rocks. Chemical Geology, 117(1-4): 251-284,, doi: 10.1016/0009-2541(94)90131-7
    Fujimaki H. 1986. Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid. Contributions to Mineralogy and Petrology, 94(1): 42-45
    Fujimaki H, Tatsumoto M, Aoki K I. 1984. Partition coefficients of Hf, Zr, and ree between phenocrysts and groundmasses. Journal of Geophysical Research: Atmospheres, 89(S02): B662-B672
    Gao Jinyao, Zhang Tao, Fang Yinxia, et al. 2009. Faulting, magmatism and crustal oceanization of the Okinawa Trough. Acta Oceanologica Sinica, 28(3): 40-49
    Geist D, Howard K A, Larson P. 1995. The generation of oceanic rhyolites by crystal fractionation: the basalt-rhyolite association at Volcán Alcedo, Galápagos Archipelago. Journal of Petrology, 36(4): 965-982
    Gill J B. 1981. Orogenic Andesites and Plate Tectonics. New York: Springer
    Grove T L, Donnelly-Nolan J M. 1986. The evolution of young silicic lavas at Medicine Lake volcano, California: implications for the origin of compositional gaps in calc-alkaline series lavas. Contributions to Mineralogy and Petrology, 92(3): 281-302
    Guo Kun. 2016. Volcanic rock magma source composition and subduction composition effects in Okinawa Trough (in Chinese) [dissertation]. Qingdao: Ocean University of China
    Guo Pengyuan, Niu Yaoling, Sun Pu, et al. 2016. The origin of Cenozoic basalts from central Inner Mongolia, East China: the consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone. Lithos, 240-243: 104-118
    Guo Pengyuan, Niu Yaoling, Ye Lei, et al. 2014. Lithosphere thinning beneath west North China craton: evidence from geochemical and Sr-Nd-Hf isotope compositions of Jining basalts. Lithos, 202-203: 37-54
    Hart S R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309(5971): 753-757
    Hauff F, Hoernle K, Schmidt A. 2003. Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system. Geochemistry, Geophysics, Geosystems, 4(8): 8913, doi: 10.1029/2002GC000421
    Hermann J, Rubatto D. 2009. Accessory phase control on the trace element signature of sediment melts in subduction zones. Chemical Geology, 265(3-4): 512-526
    Hickey-Vargas R. 1991. Isotope characteristics of submarine lavas from the Philippine Sea: implications for the origin of arc and basin magmas of the Philippine tectonic plate. Earth and Planetary Science Letters, 107(2): 290-304
    Hickey-Vargas R. 1998. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: an assessment of local versus large-scale processes. Journal of Geophysical Research: Atmospheres, 103(B9): 20963-20979
    Hickey-Vargas R, Hergt J M, Spadea P. 1995. The Indian Ocean-type isotopic signature in western Pacific marginal basins: origin and significance. In: Taylor B, Natland J, eds. Active Margins and Marginal Basins of the Western Pacific. Active Margins and Marginal Basins of the Western Pacific, 175-197
    Hofmann A W. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature, 385(6613): 219-229
    Hofmann A W, Jochum K P, Seufert M, et al. 1986. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters, 79(1-2): 33-45
    Honma H, Kusakabe M, Kagami H, et al. 1991. Major and trace element chemistry and D/H, 18O/16O, 87Sr/86Sr and 143Nd/144Nd ratios of rocks from the spreading center of the Okinawa Trough, a marginal back-arc basin. Geochemical Journal, 25(2): 121-136
    Hu Yan, Niu Yaoling, Li Jiyong, et al. 2016. Petrogenesis and tectonic significance of the Late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245: 205-222
    Huang Peng, Li Anchun, Jiang Hengyi. 2006. Geochemical features and their geological implications of volcanic rocks from the northern and middle Okinawa Trough. Acta Petrologica Sinica (in Chinese), 22(6): 1703-1712
    Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548
    Ishikawa M, Sato H, Furukawa M, et al. 1991. Report on DELP 1988 cruises in the Okinawa Trough: part 6. Petrology of volcanic rocks. Bulletin of the Earthquake Research Institute, University of Tokyo, 66(1): 151-177
    Ishizuka H, Kawanobe Y, Sakai H. 1990. Petrology and geochemistry of volcanic rocks dredged from the Okinawa Trough, an active back-arc basin. Geochemical Journal, 24(2): 75-92
    Ishizuka O, Taylor R N, Yuasa M, et al. 2007. Processes controlling along-arc isotopic variation of the southern Izu-Bonin arc. Geochemistry, Geophysics, Geosystems, 8(6): Q06008
    Johnson M C, Plank T. 2000. Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics, Geosystems, 1(12): 1007
    Kimura M. 1985. Back-arc rifting in the Okinawa Trough. Marine and Petroleum Geology, 2(3): 222-240
    Kimura M, Kaneoka I, Kato Y, et al. 1986. Report on DELP 1984 cruises in the middle Okinawa Trough: Part 5. Topography and geology of the central grabens and their vicinity. Bulletin of the Earthquake Research Institute, University of Tokyo, 61(2): 269-310
    Kimura M, Oomori T, Izawa E, et al. 1991. Research results of the 284, 286, 287 and 366 dives in the Iheya Depression and the 364 dive in the Izena Holl by “SHINKAI 2000”. In: 7th Symposium on Deep-sea Research Using the Submersible “Shinkai 2000” System. Yokosuka: Japan Marine Science and Technology Center, 147-161
    Lai Zhiqing, Zhao Guangtao, Han Zongzhu, et al. 2016. Back-arc magma processes in the Okinawa Trough: new insights from textural and compositional variations of plagioclase in basalts. Geological Journal, 51(S1): 346-356
    Lee C S, Shor Jr G G, Bibee L D, et al. 1980. Okinawa Trough: origin of a back-arc basin. Marine Geology, 35(1-3): 219-241
    Lemarchand F, Villemant B, Calas G. 1987. Trace element distribution coefficients in alkaline series. Geochimica et Cosmochimica Acta, 51(5): 1071-1081,, doi: 10.1016/0016-7037(87)90201-8
    Letouzey J, Kimura M. 1985. Okinawa Trough genesis: structure and evolution of a backarc basin developed in a continent. Marine and Petroleum Geology, 2(2): 111-130
    Letouzey J, Kimura M. 1986. The Okinawa Trough: genesis of a back-arc basin developing along a continental margin. Tectonophysics, 125(1-3): 209-230
    Li Naisheng. 2001. On tectonic problems of the Okinawa Trough. Chinese Journal of Oceanology and Limnology, 19(3): 255-264
    Li Weiran, Yang Zuosheng, Wang Yongji, et al. 1997. The petrochemical features of the volcanic rocks in Okinawa Trough and their geological significance. Acta Petrologica Sinica (in Chinese), 13(4): 538-550
    Liu Yongsheng, Gao Shan, Gao Changgui, et al. 2010. Garnet-rich granulite xenoliths from the Hannuoba basalts, North China: petrogenesis and implications for the Mesozoic crust-mantle interaction. Journal of Earth Science, 21(5): 669-691
    Luo Biji, Zhang Hongfei, Lü Xinbiao. 2012. U-Pb zircon dating, geochemical and Sr-Nd-Hf isotopic compositions of Early Indosinian intrusive rocks in West Qinling, central China: petrogenesis and tectonic implications. Contributions to Mineralogy and Petrology, 164(4): 551-569
    MacDonald R, Davies G R, Bliss C M, et al. 1987. Geochemistry of high-silica peralkaline rhyolites, Naivasha, Kenya rift valley. Journal of Petrology, 28(6): 979-1008
    Mahood G, Hildreth W. 1983. Large partition coefficients for trace elements in high-silica rhyolites. Geochimica et Cosmochimica Acta, 47(1): 11-30
    Mahood G A, Stimac J A. 1990. Trace-element partitioning in pantellerites and trachytes. Geochimica et Cosmochimica Acta, 54(8): 2257-2276,, doi: 10.1016/0016-7037(90)90050-U
    Maitre R W L. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell., 175(4): 335-347
    Miller D M, Goldstein S L, Langmuir C H. 1994. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature, 368(368): 514-520
    Nash W P, Crecraft H R. 1985. Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta, 49(11): 2309-2322
    Niu Y L, Wilson M, Humphreys E R, et al. 2012. A trace element perspective on the source of ocean island basalts (OIB) and fate of subducted ocean crust (SOC) and mantle lithosphere (SML). Episodes, 35(2): 310-327
    Okino K, Tokuyama H, HOTWATER Scientific Party. 2002. Deep-tow sonar “WADATSUMI” survey in the Okinawa Trough. InterRidge News, 11(2): 36-39
    Park S H, Lee S M, Kamenov G D, et al. 2010. Tracing the origin of subduction components beneath the South East rift in the Manus Basin, Papua New Guinea. Chemical Geology, 269(3-4): 339-349
    Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47
    Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285
    Philpotts J A, Schnetzler C C. 1970. Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis. Geochimica et Cosmochimica Acta, 34(3): 307-322
    Plank T. 2005. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46(5): 921-944
    Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4): 325-394
    Prægel N O, Holm P M. 2006. Lithospheric contributions to high-MgO basanites from the Cumbre Vieja volcano, La Palma, Canary Islands and evidence for temporal variation in plume influence. Journal of Volcanology and Geothermal Research, 149(3-4): 213-239
    Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 1-64
    Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5): Q05B07
    Savov I P, Hickey-Vargas R, D'Antonio M, et al. 2006. Petrology and geochemistry of west Philippine basin basalts and early Palau-Kyushu arc volcanic clasts from ODP leg 195, site 1201D: implications for the early history of the Izu-Bonin-Mariana arc. Journal of Petrology, 47(2): 277-299
    Schock H H. 1979. Distribution of rare-earth and other trace elements in magnetites. Chemical Geology, 26(1-2): 119-133
    Shinjo R. 1999. Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough-Ryukyu arc system. Chemical Geology, 157(1-2): 69-88
    Shinjo R, Chung S L, Kato Y, et al. 1999. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu arc: implications for the evolution of a young, intracontinental back arc basin. Journal of Geophysical Research: Solid Earth, 104(B5): 10591-10608
    Shinjo R, Kato Y. 2000. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin. Lithos, 54(3-4): 117-137
    Shinjo R, Woodhead J D, Hergt J M. 2000. Geochemical variation within the northern Ryukyu Arc: magma source compositions and geodynamic implications. Contributions to Mineralogy and Petrology, 140(3): 263-282
    Sibuet J C, Letouzey J, Barbier F, et al. 1987. Back arc extension in the Okinawa Trough. Journal of Geophysical Research: Atmospheres, 92(B13): 14041-14063
    Sisson T W. 1991. Pyroxene-high silica rhyolite trace-element partition coefficients measured by ion microprobe. Geochimica et Cosmochimica Acta, 55(6): 1575-1585,, doi: 10.1016/0016-7037(91)90129-S
    Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313-345
    Taylor B, Martinez F. 2003. Back-arc basin basalt systematics. Earth and Planetary Science Letters, 210(3-4): 481-497
    Wang K L, Chung S L, Chen C H, et al. 1999. Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough. Tectonophysics, 308(3): 363-376
    Wang Yinxi, Gu Lianxing, Zhang Zunzhong, et al. 2006. Geochronology and Nd-Sr-Pb isotops of the bimodal volcanic rocks of the Bogda rift. Acta Petrologica Sinica (in Chinese), 22(5): 1215-1224
    Wang Jinrong, Li Taide, Tian Liping, et al. 2010. Late Paleozoic tectono-magmatic evolution in Bogda Orogenic Belt, Xinjiang: evidence from geochemistry of volcanic rocks. Acta Petrologica Sinica (in Chinese), 26(4): 1103-1115
    Wang Shugong, Liang Ruicai, Wang Yong, et al. 1998. Gravity and magnetic characteristics of the north part of the Okinawa Trough and geological interpretation. Marine Geology & Quaternary Geology (in Chinese), 18(4): 19-27
    White W M, Duncan R A. 1996. Geochemistry and geochronology of the Society Islands: new evidence for deep mantle recycling. In: Basu A, Hart S, eds. Earth Processes: Reading the Isotopic Code. Washington, DC: American Geophysical Union 95: 183-206
    Yamano M, Uyeda S, Foucher J P, et al. 1989. Heat flow anomaly in the middle Okinawa Trough. Tectonophysics, 159(3-4): 307-318
    Yan Quanshu, Shi Xuefa. 2014. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu arc: a review. Acta Oceanologica Sinica, 33(4): 1-12
    Yang Shuying, Fang Nianqiao. 2015. Geochemical variation of volcanic rocks from the South China Sea and neighboring land: implication for magmatic process and mantle structure. Acta Oceanologica Sinica, 34(12): 112-124,, doi: 10.1007/s13131-015-0759-8
    Yang Yizeng, Wang Yan, Ye Risheng, et al. 2017. Petrology and geochemistry of Early Cretaceous A-type granitoids and late Mesozoic mafic dikes and their relationship to adakitic intrusions in the lower Yangtze River belt, Southeast China. International Geology Review, 59(1): 62-79
    Zeng Zhigang, Yu Shaoxiong, Wang Xiaoyuan, et al. 2010. Geochemical and isotopic characteristics of volcanic rocks from the northern East China Sea shelf margin and the Okinawa Trough. Acta Oceanologica Sinica, 29(4): 48-61
    Zhai Shikui, Chen Lirong, Wang Zhen, et al. 1997. Primary analysis on pumice magmatism model of the Okinawa Trough. Marine Geology & Quaternary Geology (in Chinese), 17(1): 59-66
    Zhang Guoliang, Jiang Shaoqing, Ouyang Hegen, et al. 2010. Magma mixing in upper mantle: evidence from high Mg# olivine hosted melt inclusions in MORBs near East Pacific Rise 13°N. Chinese Science Bulletin, 55(16): 1643-1656
    Zhang Liangliang, Liu Chuanzhou, Wu Fuyuan, et al. 2016. Sr-Nd-Hf isotopes of the intrusive rocks in the Cretaceous Xigaze ophiolite, southern Tibet: constraints on its formation setting. Lithos, 258-259: 133-148
    Zhang Hongfu, Sun Min. 2002. Geochemistry of Mesozoic basalts and mafic dikes, southeastern North China Craton, and tectonic implications. International Geology Review, 44(4): 370-382
    Zhang Junjun, Zheng Yongfei, Zhao Zifu. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 110(1-4): 305-326
    Hoang N, Uto K. 2006. Upper mantle isotopic components beneath the Ryukyu arc system: evidence for ‘back-arc’ entrapment of Pacific MORB mantle. Earth and Planetary Science Letters, 249(3-4): 229-240
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1450) PDF downloads(598) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return