Citation: | YANG Yonghu, LI Ying, ZHU Xueyuan. A novel oil spill detection method from synthetic aperture radar imageries via a bidimensional empirical mode decomposition[J]. Acta Oceanologica Sinica, 2017, 36(7): 86-94. doi: 10.1007/s13131-017-1086-z |
Bern T I, Wahl T, Andersen T, et al. 1993. Oil spill detection using satellite based SAR: experience from a field experiment. Photogrammetric Engineering and Remote Sensing, 59(3): 423-428
|
Brekke C, Solberg A H S. 2005. Oil spill detection by satellite remote sensing. Remote Sensing of Environment, 95(1): 1-13
|
Chaudhuri D, Samal A, Agrawal A, et al. 2012. A statistical approach for automatic detection of ocean disturbance features from SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(4): 1231-1242
|
Chen Lu, Li Xiuxiu, Lin Yimao, et al. 2012. Texture classification based on feature extraction with BEMD and LBP. Computer Applications and Software (in Chinese), 29(9): 243-245
|
Chen Zhong, Luo Song, Xie Ting, et al. 2014. A novel infrared small target detection method based on BEMD and local inverse entropy. Infrared Physics & Technology, 66: 114-124
|
Cheng Yongcun, Li Xiaofeng, Xu Qing, et al. 2011. SAR observation and model tracking of an oil spill event in coastal waters. Marine Pollution Bulletin, 62(2): 350-363
|
Dong Shiwei, Zhou Ziyong, Wen Baihong. 2010. Feature extraction of offshore oil slick from hyperspectral data based on EMD and neural network. Remote Sensing Technology and Application, 25(2): 221-226
|
Frate F D, Petrocchi A, Lichtenegger J, et al. 2000. Neural networks for oil spill detection using ERS-SAR data. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2282-2287
|
Guo Yue, Zhang Hengzhen. 2014. Oil spill detection using synthetic aperture radar images and feature selection in shape space. International Journal of Applied Earth Observation and Geoinformation, 30: 146-157
|
He Zhi, Wang Qiang, Shen Yi, et al. 2013. Multivariate gray model-based BEMD for hyperspectral image classification. IEEE Transactions on Instrumentation and Measurement, 62(5): 889-904
|
Kira K, Rendell L A. 1992. The feature selection problem: traditional methods and a new algorithm. Tenth National Conference on Artificial Intelligence. California: AAAI Press, 129–134
|
Liu Zhongxuan, Peng Silong. 2005. Directional EMD and its application to texture segmentation. Science in China Series: F. Information Sciences, 48(3): 354-365
|
Marghany M. 2015. Automatic detection of oil spills in the Gulf of Mexico from RADARSAT-2 SAR satellite data. Environmental Earth Sciences, 74(7): 5935-5947
|
Nirchio F, Sorgente M, Giancaspro A, et al. 2005. Automatic detection of oil spills from SAR images. International Journal of Remote Sensing, 26(6): 1157-1174
|
Nunes J C, Bouaoune Y, Delechelle E, et al. 2003. Image analysis by bidimensional empirical mode decomposition. Image and Vision Computing, 21(12): 1019-1026
|
Nunes J C, Guyot S, Deléchelle E. 2005. Texture analysis based on local analysis of the bidimensional empirical mode decomposition. Machine Vision and Applications, 16(3): 177-188
|
Nunziata F, Migliaccio M, Gambardella A. 2011. Pedestal height for sea oil slick observation. IET Radar, Sonar & Navigation, 5(2): 103-110
|
Pavlakis P, Sieber A J, Alexandry S. 1996. Monitoring oil-spill pollution in the Mediterranean with ERS SAR. ESA Earth Observation Quarterly, 52: 1-6
|
Salberg A B, Rudjord O, Solberg A H S. 2014. Oil spill detection in hybrid-polarimetric SAR images. IEEE Transactions on Geoscience and Remote Sensing, 52(10): 6521-6533
|
Skrunes S, Brekke C, Eltoft T. 2014. Characterization of marine surface slicks by Radarsat-2 multipolarization features. IEEE Transactions on Geoscience and Remote Sensing, 52(9): 5302-5319
|
Solberg A H S. 2012. Remote sensing of ocean oil-spill pollution. Proceedings of the IEEE, 100(10): 2931-2945
|
Topouzelis K N. 2008. Oil spill detection by SAR images: dark formation detection, feature extraction and classification algorithms. Sensors, 8(10): 6642-6659
|
Zhang Fengli, Shao Yun, Tian Wei, et al. 2008. Oil spill identification based on textural information of SAR image. IEEE Geoscience and Remote Sensing Symposium, 5: 1308-1311
|
Zheng Quanan, Zhao Qing, Nan W, et al. 2010. Oil spill in the Gulf of Mexico and spiral vortex. Acta Oceanologica Sinica, 29(4): 1-2
|
1. | Mykola Dominikov, Myroslav Strynadko, Bogdan Tymochko. Determining the parameters of the oil film on the sea surface using remote sensing data. Measurements infrastructure, 2023. doi:10.33955/v6(2023)-048 | |
2. | David Blondeau-Patissier, Thomas Schroeder, Gopika Suresh, et al. Detection of marine oil-like features in Sentinel-1 SAR images by supplementary use of deep learning and empirical methods: Performance assessment for the Great Barrier Reef marine park. Marine Pollution Bulletin, 2023, 188: 114598. doi:10.1016/j.marpolbul.2023.114598 | |
3. | Hamid Jafarzadeh, Masoud Mahdianpari, Saeid Homayouni, et al. Oil spill detection from Synthetic Aperture Radar Earth observations: a meta-analysis and comprehensive review. GIScience & Remote Sensing, 2021, 58(7): 1022. doi:10.1080/15481603.2021.1952542 | |
4. | Abhiit Banerjee, Dipendranath Ghosh, Suvrojit Das. Hyper-parameter tuned deep Q network for area estimation of oil spills: a meta-heuristic approach. Evolutionary Intelligence, 2021, 14(1): 175. doi:10.1007/s12065-020-00500-x | |
5. | Rami Al-Ruzouq, Mohamed Barakat A. Gibril, Abdallah Shanableh, et al. Sensors, Features, and Machine Learning for Oil Spill Detection and Monitoring: A Review. Remote Sensing, 2020, 12(20): 3338. doi:10.3390/rs12203338 | |
6. | Yantong Zhan, Guoying Zhang. Ore particle size classification model based on bi-dimensional empirical mode decomposition. Multimedia Tools and Applications, 2020, 79(7-8): 4847. doi:10.1007/s11042-018-6749-z | |
7. | Quanhua Zhao, Hongyun Zhang, Yu Li. Detecting dark spots from SAR intensity images by a point process with irregular geometry marks. International Journal of Remote Sensing, 2019, 40(2): 774. doi:10.1080/01431161.2018.1519278 |