SUN Heng, GAO Zhongyong, LU Peng, XIU Peng, CHEN Liqi. Evaluation of the net CO2 uptake in the Canada Basin in the summer of 2008[J]. Acta Oceanologica Sinica, 2017, 36(8): 94-100. doi: 10.1007/s13131-017-1028-9
Citation: SUN Heng, GAO Zhongyong, LU Peng, XIU Peng, CHEN Liqi. Evaluation of the net CO2 uptake in the Canada Basin in the summer of 2008[J]. Acta Oceanologica Sinica, 2017, 36(8): 94-100. doi: 10.1007/s13131-017-1028-9

Evaluation of the net CO2 uptake in the Canada Basin in the summer of 2008

doi: 10.1007/s13131-017-1028-9
  • Received Date: 2016-07-31
  • The third Chinese National Arctic Research Expedition (CHINARE) was conducted in the summer of 2008. During the survey, the surface seawater partial pressure of CO2 (pCO2) was measured, and sea water samples were collected for CO2 measurement in the Canada Basin. The distribution of pCO2 in the Canada Basin was determined, the influencing factors were addressed, and the air-sea CO2 flux in the Canada Basin was evaluated. The Canada Basin was divided into three regions:the ice-free zone (south of 77°N), the partially ice-covered zone (77°-80°N), and the heavily ice-covered zone (north of 80°N). In the ice-free zone, pCO2 was high (320 to 368 μatm, 1 μatm=0.101 325 Pa), primarily due to rapid equilibration with atmospheric CO2 over a short time. In the partially ice-covered zone, the surface pCO2 was relatively low (250 to 270 μatm) due to ice-edge blooms and ice-melt water dilution. In the heavily ice-covered zone, the seawater pCO2 varied between 270 and 300 μatm due to biological CO2 removal, the transportation of low pCO2 water northward, and heavy ice cover. The surface seawater pCO2 during the survey was undersaturated with respect to the atmosphere in the Canada Basin, and it was a net sink for atmospheric CO2. The summertime net CO2 uptake of the ice-free zone, the partially ice-covered zone and the heavily ice-covered zone was (4.14±1.08), (1.79±0.19), and (0.57±0.03) Tg/a (calculated by carbon, 1 Tg=1012 g), respectively. Overall, the net CO2 sink of the Canada Basin in the summer of 2008 was (6.5±1.3) Tg/a, which accounted for 4%-10% of the Arctic Ocean CO2 sink.
  • loading
  • Anderson L G, Björk G, Holby O, et al. 1994. Water masses and circulation in the Eurasian Basin:results from the Oden 91 expedition. Journal of Geophysical Research, 99(C2):3273-3283
    Anderson L G, Dyrssen D, Jones E P. 1990. An assessment of the transport of atmospheric CO2 into the Arctic Ocean. Journal of Geophysical Research, 95(C2):1703-1711
    Anderson L G, Olsson K, Chierici M. 1998a. A carbon budget for the Arctic Ocean. Global Biogeochemical Cycles, 12(3):455-465
    Anderson L G, Olsson K, Jones E P, et al. 1998b. Anthropogenic carbon dioxide in the Arctic Ocean:inventory and sinks. Journal of Geophysical Research, 103(C12):27707-27716
    Anderson L G, Falck E, Jones E P, et al. 2004. Enhanced uptake of atmospheric CO2 during freezing of seawater:a field study in Storfjorden, Svalbard. Journal of Geophysical Research, 109(C6):C06004
    Arrigo K R, Perovich D K, Pickart R S, et al. 2012. Massive phytoplankton blooms under Arctic sea ice. Science, 336(6087):1408
    Arrigo K R, Perovich D K, Pickart R S, et al. 2014. Phytoplankton blooms beneath the sea ice in the Chukchi sea. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 105:1-16
    Bates N R. 2006. Air-sea CO2 fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean. Journal of Geophysical Research, 111(C10):C10013
    Bates N R, Best M H P, Hansell D A. 2005. Spatio-temporal distribution of dissolved inorganic carbon and net community production in the Chukchi and Beaufort Seas. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 52(24-26):3303-3323
    Bates N R, Cai Weijun, Mathis J T. 2011. The ocean carbon cycle in the western Arctic ocean:distributions and air-sea fluxes of carbon dioxide. Oceanography, 24(3):186-201
    Bates N R, Garley R, Frey K E, et al. 2014. Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean:meltwater contributions to air-sea CO2 gas exchange, mixed-layer properties and rates of net community production under sea ice. Biogeosciences, 11(23):6769-6789
    Bates N R, Mathis J T. 2009. The Arctic Ocean marine carbon cycle:evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences, 6(11):2433-2459
    Bates N R, Moran S B, Hansell D A, et al. 2006. An increasing CO2 sink in the Arctic Ocean due to sea-ice loss. Geophysical Research Letters, 33(23):L23609
    Cai Weijun, Chen Liqi, Chen Baoshan, et al. 2010. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean Basin. Science, 329(5991):556-559
    Cai Weijun, Dai Minhan, Wang Yongchen, et al. 2004. The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Continental Shelf Research, 24(12):1301-1319
    Cai Weijun, Wang Yongchen. 1998. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnology and Oceanography, 43(4):657-668
    Chen Liqi, Gao Zhongyong. 2007. Spatial variability in the partial pressures of CO2 in the northern Bering and Chukchi seas. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 54(23-26):2619-2629
    Codispoti L A, Flagg C, Kelly V, et al. 2005. Hydrographic conditions during the 2002 SBI process experiments. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 52(24-26):3199-3226
    Dickson A G, Sabine C L, Christian J R. 2007. Guide to Best Practices for Ocean CO2 Measurements. Sidney, British Columbia:North Pacific Marine Science Organization
    Fransson A, Chierici M, Anderson L G, et al. 2001. The importance of shelf processes for the modification of chemical constituents in the waters of the Eurasian Arctic Ocean:implication for carbon fluxes. Continental Shelf Research, 21(3):225-242
    Gao Zhongyong, Chen Liqi, Sun Heng, et al. 2012. Distributions and air-sea fluxes of carbon dioxide in the Western Arctic Ocean. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 81-84:46-52
    Geilfus N X, Carnat G, Papakyriakou T, et al. 2012. Dynamics of pCO2 and related air-ice CO2 fluxes in the Arctic coastal zone (Amundsen Gulf, Beaufort Sea). Journal of Geophysical Research, 117(C2):C00G10
    Gosselin M, Levasseur M, Wheeler P A, et al. 1997. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 44(8):1623-1644
    Harada N. 2016. Review:potential catastrophic reduction of sea ice in the western Arctic Ocean:Its impact on biogeochemical cycles and marine ecosystems. Global and Planetary Change, 136:1-17
    Jutterström S, Anderson L G. 2010. Uptake of CO2 by the Arctic Ocean in a changing climate. Marine Chemistry, 122(1-4):96-104
    Kaltin S, Anderson L G. 2005. Uptake of atmospheric carbon dioxide in Arctic shelf seas:evaluation of the relative importance of processes that influence pCO2 in water transported over the Bering-Chukchi Sea shelf. Marine Chemistry, 94(1-4):67-79
    Lu Peng, Li Zhijun, Cheng Bin, et al. 2010. Sea ice surface features in Arctic summer 2008:aerial observations. Remote Sensing of Environment, 114(4):693-699
    Lundberg L, Haugan P M. 1996. A Nordic Seas-Arctic Ocean carbon budget from volume flows and inorganic carbon data. Global Biogeochemical Cycles, 10(3):493-510
    Manizza M, Follows M J, Dutkiewicz S, et al. 2013. Changes in the Arctic Ocean CO2 sink (1996-2007):a regional model analysis. Global Biogeochemical Cycles, 27(4):1108-1118
    Mathis J T, Questel J M. 2013. Assessing seasonal changes in carbonate parameters across small spatial gradients in the Northeastern Chukchi Sea. Continental Shelf Research, 67:42-51
    Miller L A, Carnat G, Else B G T, et al. 2011. Carbonate system evolution at the Arctic Ocean surface during autumn freeze-up. Journal of Geophysical Research, 116(C9), doi: 10.1029/2011JC007143
    Murata A, Takizawa T. 2003. Summertime CO2 sinks in shelf and slope waters of the western Arctic Ocean. Continental Shelf Research, 23(8):753-776
    Nakaoka S I, Aoki S, Nakazawa T, et al. 2006. Temporal and spatial variations of oceanic pCO2 and air-sea CO2 flux in the Greenland Sea and the Barents Sea. Tellus B:Chemical and Physical Meteorology, 58(2):148-161
    Nitishinsky M, Anderson L G, Hölemann J A. 2007. Inorganic carbon and nutrient fluxes on the Arctic Shelf. Continental Shelf Research, 27(10-11):1584-1599
    Omar A M, Johannessen T, Olsen A, et al. 2007. Seasonal and interannual variability of the air-sea CO2 flux in the Atlantic sector of the Barents Sea. Marine Chemistry, 104(3-4):203-213
    Pierrot D, Neill C, Sullivan K, et al. 2009. Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 56(8-10):512-522
    Semiletov I P, Pipko I I, Repina I, et al. 2007. Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere-ice-water interfaces in the Arctic Ocean:pacific sector of the Arctic. Journal of Marine Systems, 66(1-4):204-226
    Sun Heng, Gao Zhongyong, Chen Liqi, et al. 2011. Distributions of dissolve inorganic carbon and total alkalinity in the western Arctic Ocean. Advances in Polar Science, 22(4):246-252
    Takahashi T, Olafsson J, Goddard J G, et al. 1993. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans:a comparative study. Global Biogeochemical Cycles, 7(4):843-878
    Wang Muyin, Overland J E. 2009. A sea ice free summer Arctic within 30 years. Geophysical Research Letters, 36(7):L07502
    Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97(C5):7373-7382
    Weiss R F. 1974. Carbon dioxide in water and seawater:the solubility of a non-ideal gas. Marine Chemistry, 2(3):203-215
    Woodgate R A, Aagaard K, Weingartner T J. 2005. A year in the physical oceanography of the Chukchi Sea:moored measurements from autumn 1990-1991. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 52(24-26):3116-3149
    Yamamoto-Kawai M, McLaughlin F A, Carmack E C, et al. 2009. Aragonite undersaturation in the Arctic Ocean:effects of ocean acidification and sea ice melt. Science, 326(5956):1098-1100
    Zhang Jinlun, Ashjian C, Campbell R, et al. 2015. The influence of sea ice and snow cover and nutrient availability on the formation of massive under-ice phytoplankton blooms in the Chukchi Sea. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 118:122-135
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1118) PDF downloads(949) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return