Citation: | TAO Jing, MA Weiwei, ZHU Maoxu, LI Tie, YANG Rujun. Characterization of iron diagenesis in marine sediments using refined iron speciation and quantized iron(Ⅲ)-oxide reactivity: a case study in the Jiaozhou Bay, China[J]. Acta Oceanologica Sinica, 2017, 36(7): 48-55. doi: 10.1007/s13131-016-1083-2 |
Álvarez-Iglesias P, Rubio B. 2012. Early diagenesis of organic-matter-rich sediments in a ría environment: organic matter sources, pyrites morphology and limitation of pyritization at depth. Estuarine, Coastal and Shelf Science, 100: 113-123
|
Amann R, Glöckner F O, Neef A. 1997. Modern methods in subsurface microbiology: in situ identification of microorganisms with nucleic acid probes. FEMS Microbiology Reviews, 20(3-4): 191-200
|
Beckler J S, Kiriazi N, Rabouille C, et al. 2016. Importance of microbial iron reduction in deep sediments of river-dominated continental-margins. Marine Chemistry, 178: 22-34
|
Berner R A. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. American Journal of Science, 282(4): 451-473
|
Burton E D, Sullivan L A, Bush R T, et al. 2008. A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils. Applied Geochemistry, 23(9): 2759-2766
|
Canfield D E, Berner R A. 1987. Dissolution and pyritization of magnetite in anoxie marine sediments. Geochimica et Cosmochimica Acta, 51(3): 645-659
|
Canfield D E, Kristensen E, Thamdrup B. 2005. Aquatic Geomicrobiology. Amsterdam: Elsevier
|
Chen Liangjin, Zhu Maoxu, Yang Guipeng, et al. 2013. Reductive reactivity of iron(Ⅲ) oxides in the East China Sea sediments: characterization by selective extraction and kinetic dissolution. PLoS One, 8(11): e80367
|
Chen Keke, Zhu Maoxu, Yang Guipeng, et al. 2014. Spatial distribution of organic and pyritic sulfur in surface sediments of eutrophic Jiaozhou Bay, China: clues to anthropogenic impacts. Marine Pollution Bulletin, 88(1-2): 284-291
|
Cline J D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography, 14(3): 454-458
|
Devereux R, Lehrter J C. 2015. Manganese, iron, and sulfur cycling in Louisiana continental shelf sediments. Continental Shelf Research, 99: 46-56
|
Ge Can, Zhang Weiguo, Dong Chenyin, et al. 2015. Magnetic mineral diagenesis in the river-dominated inner shelf of the East China Sea, China. Journal of Geophysical Research: Solid Earth, 120(7): 4720-4733
|
Goldhaber M B. 2003. Sulfur-rich sediment. In: Mackenzie F T, ed. Sediments, Diagenesis, and Sedimentary Rocks, Treatise on Geochemistry. Amsterdam: Elsevier, 257–288
|
Hoehler T M, Alperin M J, Albert D B, et al. 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochimica et Cosmochimica Acta, 62(10): 1745-1756
|
Hyacinthe C, Bonneville S, van Cappellen P. 2006. Reactive iron(Ⅲ) in sediments: chemical versus microbial extractions. Geochimica et Cosmochimica Acta, 70(16): 4166-4180
|
Hyacinthe C, van Cappellen P. 2004. An authigenic iron phosphate phase in estuarine sediments: composition, formation and chemical reactivity. Marine Chemistry, 91(1-4): 227-251
|
Hyun J H, Kim S H, Mok J S, et al. 2013. Impacts of long-line aquaculture of Pacific oysters (Crassostrea gigas) on sulfate reduction and diffusive nutrient flux in the coastal sediments of Jinhae-Tongyeong, Korea. Marine Pollution Bulletin, 74(1): 187-198
|
Jacobson M E. 1994. Chemical and biological mobilization of Fe(Ⅲ) in marsh sediments. Biogeochemistry, 25(1): 40-60
|
Jensen M M, Thamdrup B, Rysgaard S, et al. 2003. Rates and regulation of microbial iron reduction in sediments of the Baltic-North Sea transition. Biogeochemistry, 65(3): 295-317
|
Kallmeyer J, Ferdelman T G, Weber A, et al. 2004. A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnology and Oceanography: Methods, 2(6): 171-180
|
Konhauser K. 2006. Introduction to Geomicrobiology. Malden: Blackwell Publishing
|
Koretsky C M, Moore C M, Lowe K L, et al. 2003. Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA). Biogeochemistry, 64(2): 179-203
|
Koretsky C M, van Cappellen P, DiChristina T J, et al. 2005. Salt marsh pore water geochemistry does not correlate with microbial community structure. Estuarine, Coastal and Shelf Science, 62(1-2): 233-251
|
Kostka J E, Luther Ⅲ G W. 1994. Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochimica et Cosmochimica Acta, 58(7): 1701-1710
|
Kraal P, Burton E D, Bush R T. 2013. Iron monosulfide accumulation and pyrite formation in eutrophic estuarine sediments. Geochimica et Cosmochimica Acta, 122: 75-88
|
Kristensen E, Mangion P, Tang M, et al. 2011. Microbial carbon oxidation rates and pathways in sediments of two Tanzanian mangrove forests. Biogeochemistry, 103(1): 143-158
|
Larsen O, Postma D. 2001. Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite. Geochimica et Cosmochimica Acta, 65(9): 1367-1379
|
Lehtoranta J, Ekholm P, Pitkänen H. 2009. Coastal eutrophication thresholds: a matter of sediment microbial processes. Ambio, 38(6): 303-308
|
Liu Sumei, Zhang Jing, Chen Hongtao, et al. 2005. Factors influencing nutrient dynamics in the eutrophic Jiaozhou Bay, North China. Progress in Oceanography, 66(1): 66-85
|
Liu Sumei, Zhu Bingde, Zhang Jing, et al. 2010. Environmental change in Jiaozhou Bay recorded by nutrient components in sediments. Marine Pollution Bulletin, 60(9): 1591-1599
|
Lovley D R. 1991. Dissimilatory Fe(Ⅲ) and Mn(IV) reduction. Microbiological Review, 55(2): 259-287
|
Lovley D R, Phillips E J P. 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments. Applied and Environmental Microbiology, 53(7): 1536-1540
|
Luna G M, Manini E, Danovaro R. 2002. Large fraction of dead and inactive bacteria in coastal marine sediments: comparison of protocols for determination and ecological significance. Applied and Environmental Microbiology, 68(7): 3509-3513
|
Luther Ⅲ G W. 1991. Pyrite synthesis via polysulfide compounds. Geochimica et Cosmochimica Acta, 55(10): 2839-2849
|
März C, Poulton S W, Brumsack H J, et al. 2012. Climate-controlled variability of iron deposition in the central arctic ocean (southern Mendeleev Ridge) over the last 130 000 years. Chemical Geology, 330-331: 116-126
|
Nickel M, Vandieken V, Brüchert V, et al. 2008. Microbial Mn(IV) and Fe(Ⅲ) reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition. Deep-Sea Research: Part Ⅱ Topical Studies in Oceanography, 55(20-21): 2390-2398
|
Postma D. 1993. The reactivity of iron oxides in sediments: a kinetic approach. Geochimica et Cosmochimica Acta, 57(21-22): 5027-5034
|
Poulton S W, Canfield D E. 2005. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chemical Geology, 214(3-4): 209-221
|
Pu Xiaoqiang, Zhong Shaojun, Liu Fei, et al. 2009. Restriction factors to sulfide formation in estuarine sediments of Licun River of Jiaozhou Bay. Geochimica (in Chinese), 38(4): 323-333
|
Raiswell R, Canfield D E, Berner R A. 1994. A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. Chemical Geology, 111(1–4): 101-110
|
Raiswell R, Canfield D E. 2012. The iron biogeochemical cycle past and present. Geochemical Prospectives, 1(1): 1-220
|
Raiswell R, Vu H P, Brinza L, et al. 2010. The determination of labile Fe in ferrihydrite by ascorbic acid extraction: methodology, dissolution kinetics and loss of solubility with age and de-watering. Chemical Geology, 278(1-2): 70-79
|
Rickard D T. 1975. Kinetics and mechanism of pyrite formation at low temperatures. American Journal of Science, 275(6): 636-652
|
Rickard D. 2014. The sedimentary sulfur system: biogeochemistry and evolution through geologic time. In: Mackenzie F T, ed. Sediments, Diagenesis, and Sedimentary Rocks, Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 267–326
|
Rickard D, Morse J W. 2005. Acid volatile sulfide (AVS). Marine Chemistry, 97(3-4): 141-197
|
Rowan C J, Roberts A P, Broadbent T. 2009. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: a new view. Earth and Planetary Science Letters, 277(1-2): 223-235
|
Rysgaard S, Fossing H, Jensen M M. 2001. Organic matter degradation through oxygen respiration, denitrification, and manganese, iron, and sulfate reduction in marine sediments (the Kattegat and the Skagerrak). Ophelia, 55(2): 77
|
Stookey L L. 1970. Ferrozine -A new spectrophotometric reagent for iron. Analytical Chemistry, 42(7): 779-781
|
Thamdrup B. 2000. Bacterial manganese and iron reduction in aquatic sediments. In: Schink B, eds. Advances in Microbial Ecology. New York: Springer, 41–84
|
Wang Yifeng, van Cappellen P. 1996. A multicomponent reactive transport model of early diagenesis: application to redox cycling in coastal marine sediments. Geochimica et Cosmochimica Acta, 60(16): 2993-3014
|
Wijsman J W M, Herman P M J, Middelburg J J, et al. 2002. A model for early diagenetic processes in sediments of the continental shelf of the Black Sea. Estuarine, Coastal and Shelf Science, 54(3): 403-421
|
Wu Yulin, Sun Song, Zhang Yongshan. 2005. Long-term change of environment and it’s influence on phytoplankton community structure in Jiaozhou Bay. Oceanologia et Limnologia Sinica (in Chinese), 36(6): 487-498
|
Zhu Maoxu, Chen Liangjin, Yang Guipeng, et al. 2014b. Kinetic characterization on reductive reactivity of iron(Ⅲ) oxides in surface sediments of the East China Sea and the influence of repeated redox cycles: implications for microbial iron reduction. Applied Geochemistry, 42: 16-26
|
Zhu Maoxu, Chen Liangjin, Yang Guipeng, et al. 2014a. Humic sulfur in eutrophic bay sediments: characterization by sulfur stable isotopes and K-edge XANES spectroscopy. Estuarine, Coastal and Shelf Science, 138: 121-129
|
Zhu Maoxu, Huang Xiangli, Yang Guipeng, et al. 2015. Iron geochemistry in surface sediments of a temperate semi-enclosed bay, North China. Estuarine, Coastal and Shelf Science, 165: 25-35
|
Zhu Maoxu, Liu Juan, Yang Guipeng, et al. 2012. Reactive iron and its buffering capacity towards dissolved sulfide in sediments of Jiaozhou Bay, China. Marine Environmental Research, 80: 46-55
|
Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al. 2013. Formation and burial of pyrite and organic sulfur in mud sediments of the East China Sea inner shelf: constraints from solid-phase sulfur speciation and stable sulfur isotope. Continental Shelf Research, 54: 24-36
|
Zimmerman A R, Canuel E A. 2000. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. Marine Chemistry, 69(1-2): 117-137
|