Citation: | CAO Wenrui, DAS Anindita, SAREN Gaowa, JIANG Mingyu, ZHANG Hongjie, YU Xinke. Autotrophic potential in mesophilic heterotrophic bacterial isolates from Sino-Pacific marine sediments[J]. Acta Oceanologica Sinica, 2017, 36(2): 69-77. doi: 10.1007/s13131-016-0962-2 |
Alibo D S, Nozaki Y. 2000. Dissolved rare earth elements in the South China Sea:geochemical characterization of the water masses. Journal of Geophysical Research, 105(C12):28771-28783
|
Alonso-Sáez L, Galand P E, Casamayor E O, et al. 2010. High bicarbonate assimilation in the dark by Arctic bacteria. The ISME Journal, 4(12):1581-1590
|
Altschul S F, Gish W, Miller W, et al. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215(3):403-410
|
Altschul S F, Madden T L, Schäffer A A, et al. 1997. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Research, 25(17):3389-3402
|
Bach W, Edwards K J. 2003. Iron and sulfide oxidation within the basaltic ocean crust:Implications for chemolithoautotrophic microbial biomass production. Geochimica et Cosmochimica Acta, 67(20):3871-3887
|
Bar-Even A, Noor E, Milo R. 2012. A survey of carbon fixation pathways through a quantitative lens. Journal of Experimental Botany, 63(6):2325-2342
|
Canfield D E, Thamdrup B. 2009. Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away. Geobiology, 7(4):385-392
|
Chen C T A. 2005. Tracing tropical and intermediate waters from the South China Sea to the Okinawa Trough and beyond. Journal of Geophysical Research, 110(C5):C05012
|
Chen C T A, Liu C T, Pai S C. 1995. Variations in oxygen, nutrient and carbonate fluxes of the Kuroshio Current. La Mer, 33:161-176
|
Chen C T A, Wang S L. 1999. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. Journal of Geophysical Research, 104(C9):20675-20686
|
Connon S A, Giovannoni S J. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Applied and Environmental Microbiology, 68(8):3878-3885
|
Dang H, Li J, Zhang X, et al. 2009. Diversity and spatial distribution of amoA-encoding archaea in the deep-sea sediments of the tropical West Pacific Continental Margin. Journal of Applied Microbiology, 106(5):1482-1493
|
Das A, Fernandes C E G, Naik S S, et al. 2011a. Bacterial response to contrasting sediment geochemistry in the Central Indian Basin. Sedimentology, 58(3):756-784
|
Das A, Sujith P P, Mourya B S, et al. 2011b. Chemosynthetic activity prevails in deep-sea sediments of the Central Indian Basin. Extremophiles, 15(2):177-189
|
DeLong E F. 1992. Archaea in coastal marine environments. Proceeding of the National Academy of Sciences of the United States of America, 89(12):5685-5689
|
Edwards K J, Bach W, McCollom T M, et al. 2004. Neutrophilic Iron-oxidizing bacteria in the ocean:their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiology Journal, 21(6):393-404
|
Edwards K J, Bond P L, Druschel G K, et al. 2000. Geochemical and biological aspects of sulfide mineral dissolution:lessons from Iron Mountain, California. Chemical Geology, 169(3-4):383-397
|
Feng B W, Li X R, Wang J H, et al. 2009. Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiology Ecology, 70(2):236-248
|
Fernandes S O, Krishnan K P, Khedekar V D, et al. 2005. Manganese oxidation by bacterial isolates from the Indian Ridge System. Biometals, 18(5):483-492
|
Fournier M, Fabbri O, Angelier J, et al. 2001. Regional seismicity and on-land deformation in the Ryukyu arc:implications for the kinematics of opening of the Okinawa Trough. Journal of Geophysical Research, 106(B7):13751-13768
|
González J M, Ferńandez-Ǵomez B, Fernàndez-Guerra A, et al. 2008. Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proceeding of the National Academy of Sciences of the United States of America, 105(25):8724-8729
|
Gungor A, Lee G H, Kim H J, et al. 2012. Structural characteristics of the northern Okinawa Trough and adjacent areas from regional seismic reflection data:geologic and tectonic implications. Tectonophysics, 522-523:198-207
|
Hayes D E, Nissen S S, Buhl P, et al. 1995. Throughgoing crustal faults along the northern margin of the South China Sea and their role in crustal extension. Journal of Geophysical Research, 100(B11):22435-22446
|
Herndl G J, Reinthaler T. 2013. Microbial control of the dark end of the biological pump. Nature Geoscience, 6(9):718-724
|
Hesselsoe M, Nielsen J L, Roslev P, et al. 2005. Isotope labeling and microautoradiography of active heterotrophic bacteria on the basis of assimilation of 14CO2. Applied and Environmental Microbiology, 71(2):646-655
|
Hinrichs K U, Hayes J M, Sylva S P, et al. 1999. Methane-consuming archaebacteria in marine sediments. Nature, 398(6730):802-805
|
Ichikawa H, Beardsley R C. 2002. The current system in the Yellow and East China Seas. Journal of Oceanography, 58(1):77-92
|
Ishibashi J, Sano Y, Wakita H, et al. 1995. Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough Back Arc Basin, southwest of Japan. Chemical Geology, 123(1-4):1-15
|
Jiang Hongchen, Dong Hailiang, Ji Shanshan, et al. 2007. Microbial diversity in the deep marine sediments from the Qiongdongnan Basin in South China Sea. Geomicrobiology Journal, 24(6):505-517
|
Kang Xuming, Liu Sumei, Zhang Guoling. 2014. Reduced inorganic sulfur in the sediments of the Yellow Sea and East China Sea. Acta Oceanologica Sinica, 33(9):100-108
|
Karl D M, Wirsen C O, Jannasch H W. 1980. Deep-sea primary production at the galapagos hydrothermal vents. Science, 207(4437):1345-1347
|
Kostka J E, Prakash O, Overholt W A, et al. 2011. Hydrocarbon-degrading bacteria and the bacterial community response in gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Applied and Environmental Microbiology, 77(22):7962-7974
|
Labrenz M, Jost G, Pohl C, et al. 2005. Impact of different in vitro electron donor/acceptor conditions on potential chemolithoautotrophic communities from marine pelagic redoxclines. Applied and Environmental Microbiology, 71(11):6664-6672
|
Lam P, Cowen J P, Popp B N, et al. 2008. Microbial ammonia oxidation and enhanced nitrogen cycling in the Endeavour hydrothermal plume. Geochimica et Cosmochimica Acta, 72(9):2268-2286
|
Lee S Y, Huh C A, Su C C, et al. 2004. Sedimentation in the Southern Okinawa Trough:enhanced particle scavenging and teleconnection between the Equatorial Pacific and western Pacific margins. Deep Sea Research Part I, 51(11):1769-1780
|
Lin S, Hsieh W C, Lim Y C, et al. 2006. Methane migration and its influence on sulfate reduction in the good weather ridge region, South China Sea continental margin sediments. Terrestrial Atmospheric and Oceanic Sciences, 17(4):883-902
|
Loka Bharathi P A, Nair S. 2005. Rise of the dormant:simulated disturbance improves culturable abundance, diversity, and functions of deep-sea bacteria of Central Indian Ocean Basin. Marine Georesources & Geotechnology, 23(4):419-428
|
Mackin J E, Aller R C. 1984. Ammonium adsorption in marine sediments. Limnology and Oceanography, 29(2):250-257
|
Mattes T E, Nunn B L, Marshall K T, et al. 2013. Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark ocean. The ISME Journal, 7(12):2349-2360
|
Middelburg J J, Levin L A. 2009. Coastal hypoxia and sediment biogeochemistry. Biogeosciences Discussion, 6(7):1273-1293
|
Molari M, Manini E, Dell'Anno A. 2013. Dark inorganic carbon fixation sustains the functioning of benthic deep-sea ecosystems. Global Biogeochemical Cycles, 27(1):212-221
|
Nakajima R, Yamakita T, Watanabe H, et al. 2014. Species richness and community structure of benthic macrofaun敡猠敡慮牤挠桭???て???????㈠??????扥牰?坳慥湡朠?偨??偯牳敹汮汴?坥?????汣畯浳?偳??敭瑳?慡汲???つ?ぴ扨??佊捡数慡湮?摳牥椠污汲楣湨杩?灥牬潡橧敯挺瑡??佡?側??印楴琠整?ㄠ?????乩潦特琠桰敲物湯?卩潴畹琠桡??桡楳渠慦?卲攠慣???湥?偶牡潴捩敯敮搮椠湄杩獶?潲晳?瑴桹攠?佮捤攠慄湩??牲楩汢汵楴湩杯?偳爬漠朲爰愨洱???渱椱琶椰愭氱?刷攲瀼潢牲琾獎???????????扗物?坳慥湮朠??畏椬稠桊楡??卡灳楣癨愠捈欠??????刹甮琠桃敨牡晲潡牣摴?卲??敡瑴?慯汮????ぬ???入甬愠湡瑵楴景楴捲慯瑰楨潩湣?潂晥?捧潩?潴捯捡甠牳牰楰渠条?牵敮慤捡瑮楴漠湡?爠慨瑹敤獲?楴湨?摲敭敡灬?獶略扮獴敳愠景汦漠潴牨?猠敇摵楡浹敭湡瑳猠???敩潮挮栠楁浰楰捬慩?敤琠??潤猠浅潮捶桩楲浯楮捭慥??捡瑬愠???????????????????戩爺?圹田?堭椲愹漱搷愼湢? ̄坎略??楴湩??卌漠湎本??楢湥浤椠湒朠??敍琬?慓汣???ば????十瀬愠瑥楴漠?瑬攮洠瀲漰爰愷氮?摉楮獯瑲牧楡扮畩瑣椠潣湡?潢景?搠楦獩獸潡汴癩敯摮?獢畹氠晳極摬敦?楴湥??桥楤湵慣?浮慧爠杢楡湣慴汥?獩敡愠獩???桨楥渠敂獬敡??漠畓牥湡愠汷?潴晥?传捣敯慬湵潭汮漮朠祅?慶湩摲??業浥湮潴污潬朠祍??????????????ㄨ???戺爳?失愹渭″儰甲愴渼獢桲甾??卮桯極?塡甠敔昬愠??坤慡渠杈??畎湡獫桡慳湥??敡琠?愬氠??㈠ちぬ??′?愱樰漮爠?敲汣敨浡敥湡瑬??瑩牶慥捲敳?整汹攠浡敮湤琠??慳湴摲?卢牵??乯摮?慡湬摯?偧戠?楨獥潲瑭潡灬攠?獮瑤甠摧楥敯獣?潥晭??敡湬漠穧潲楡捤?扥慮獴慳氠瑩獮?晨特潤浲?瑴桨敥?卭潡畬琠桳??桩業湥慮?即攠慡??却捨楥攠湙捯敮?楧湵??栠楋湮慯?卬攠牉楖攠獨????慴牨瑥桲?卡捬椠敦湩捥敬獤???ㄠ??????ふ?????戠牏?婩敮湡杷?娠桴楲杯慵湧杨???楰異??桥慤渠条桮畤愠???桩敲湯??????敬琠?慩汣???どは???佹爬椠朷椶渨?漩昺?愱?游愭琱椲瘱攱?獢畲氾晏畺牡?捡栠楁洬渠敔祡?楡湭?琠桔攬??畩敳楴獡桮慣湯琠慅漠?栬礠摥牴漠瑡桬攮爠洲愰氰?昮椠敉汮摩??潡晴晩獯桮漠牡敮?渠潰牲瑯桰敡慧獡瑴?呯慮椠睯慦渠??卢捤極散湴捩敯?椠湡??桮楧渠慴?卥攠牐楨敩獬????慮牥琠桔?卥据楣敨渺捥敶獩???っ?ㄠ????????ㄠ????扯牲?婬栠慡湮杤?坳数楡??卡慬爠敤湩?????極?呩楯敮朠慯湦朠??敬瑣?慮汯??金??は???楡癬攠牯獦椠瑁祳?慡湮搠?捡潲浴浨甠湓楣瑩祥?獣瑥牳甬挠琲申爨攱?漺昱‰愵爭挱栱愱攼慢?椾湐?搠敘敩灡?獱畩扡獮畧爬映慚捨敯?獧攠摓楨浡敯湪瑵獮?映牙潵洠?瑥桮敱?瑡牮漬瀠楥捴愠污?圮攠猲琰攰爷渮?灁慵捴楨晩楧捥???甠牳牵敬湦瑩??椠捭物潮扥楲潡汬潳朠祡???ぴ????????????扩牳?婴桯潰略??楩??即略湤?婭桥敮湴???桦攠湴??愠湮穯潲湴杨??敮琠?慯汮???づの????敳獬潯穰潥椠捯?瀠慴汨敥漠杓敯潵杴牨愠灃桨祩?慡渠摓?瑡攠捡瑮潤渠楴捨?敩癲漠汩畭瑰楬潩湣?潴晩?卮潳甠瑦桯??桭楥湴慨?卮敥愠?慬湵摸?慡摮橤愠捧敡湳琠?慹牤敲慡獴?椠湦?瑲桭敡?捩潯湮琮攠硃瑨?潮晥?呥攠瑓档祩慥湮?慥渠摂?偬慬汥整潩?倬愠挵椲昨椳挩?椴渰琱攭爴挰漷渼湢敲挾瑑楩潮渠獙???獨污慮測搠??牡捯????????ㄠ??????irong, et al. 1987. Geology of the East China Sea (in Chinese). Beijing:Science Press, 1-286
|
Reinthaler T, van Aken H M, Herndl G J. 2010. Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantićs interior. Deep Sea Research Part II, 57(16):1572-1580
|
Romanenko V I. 1964. Heterotrophic CO2 assimilation by water bacterial flora. Mikrobiologiia, 33:679-683
|
Roslev P, Larsen M B, Jøgensen D, et al. 2004. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria. Journal of Microbiological Methods, 59(3):381-393
|
Schulz H D. 2000. Quantification of early diagenesis:dissolved constituents in marine pore water. In:Schulz H D, Zabel M, eds. Marine Geochemistry. Berlin Heidelberg:Springer-Verlag, 85-128
|
Schubert C J, Durisch-Kaiser E, Holzner C P, et al. 2006. Methanotrophic microbial communities associated with bubble plumes above gas seeps in the Black Sea. Geochemistry, Geophysics, Geosystems, 7(4):Q04002
|
Sorokin D Y. 1995. Sulfitobacter pontiacus gen. nov., sp. nov. —a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Microbiology, 64(3):295-305
|
Stewart E J. 2012. Growing unculturable bacteria. Journal of Bacteriology, 194(16):4151-4160
|
Sujith P P, Lokabharathi P A. 2011. Manganese oxidation by bacteria:biogeochemical aspects. Progress in Molecular & Subcellular Biology, 52:49-76
|
Swan B K, Martinez-Garcia M, Preston C M, et al. 2011. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science, 333(6047):1296-1300
|
Taylor B, Hayes D E. 1983. Origin and history of the South China Sea basin. In:Hayes D E, ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands:Part 2. Washington, DC, USA:American Geophysical Union, 23-56
|
Thurber A R, Levin L A, Rowden A A, et al. 2013. Microbes, macrofauna, and methane:a novel seep community fueled by aerobic methanotrophy. Limnology and Oceanography, 58(5):1640-1656
|
Tice M M, Lowe D R. 2006. Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology, 34(1):37-40
|
Tuttle J H, Jannasch H W. 1977. Thiosulfate stimulation of microbial dark assimilation of carbon dioxide in shallow marine waters. Microbial Ecology, 4(1):9-25
|
Ulloa O, Canfield D E, DeLong E F, et al. 2012. Microbial oceanography of anoxic oxygen minimum zones. Proceedings of the National Academy of Sciences of the United States of America, 109(40):15996-16003
|
Wang S L, Chen C T A, Hong G H, et al. 2000a. Carbon dioxide and related parameters in the East China Sea. Continental Shelf R
|