CAO Wenrui, DAS Anindita, SAREN Gaowa, JIANG Mingyu, ZHANG Hongjie, YU Xinke. Autotrophic potential in mesophilic heterotrophic bacterial isolates from Sino-Pacific marine sediments[J]. Acta Oceanologica Sinica, 2017, 36(2): 69-77. doi: 10.1007/s13131-016-0962-2
Citation: CAO Wenrui, DAS Anindita, SAREN Gaowa, JIANG Mingyu, ZHANG Hongjie, YU Xinke. Autotrophic potential in mesophilic heterotrophic bacterial isolates from Sino-Pacific marine sediments[J]. Acta Oceanologica Sinica, 2017, 36(2): 69-77. doi: 10.1007/s13131-016-0962-2

Autotrophic potential in mesophilic heterotrophic bacterial isolates from Sino-Pacific marine sediments

doi: 10.1007/s13131-016-0962-2
  • Received Date: 2016-06-24
  • Rev Recd Date: 2016-10-26
  • Microbial carbon fixation is a paramount process in the ocean especially below the photic zone both in water and sedimentary ecosystems. Autotrophic microbes that fix carbon dioxide are renowned. However, the question whether heterotrophs can also fix carbon is intriguing. Ten heterotrophically grown, identified bacterial isolates from the Sino-Pacific marine sediments were tested for autotrophic uptake potential with and without addition of electron donors. Nine of the ten isolates showed carbon uptake capacity without addition of any substrate at very low rates in the order of 10-8 to 10-4 fmol/(cell·h). The addition of manganese and ammonium at 1 mmol/L final concentration enhanced the uptake potential. Addition of 1 mmol/L final concentrations of reduced iron (10-6 to 10-5 fmol/(cell·h) and sulfide (10-5 fmol/(cell·h) decreased the uptake potential significantly at p<0.1. Bacterial tolerance to formaldehyde suggested propensities of anaplerotic chemical reactions that form metabolic intermediates of C-1 metabolism pathways. The isolates displayed high metabolic flexibility. With the changes in electron donors, the isolates metabolically toggled between relatively anoxic reductive iron/sulfur cycles and the oxidative cycles of manganese/ammonium and vice-versa. This property makes these microbes successful survivors in the highly dynamic Sino-Pacific sediments.
  • loading
  • Alibo D S, Nozaki Y. 2000. Dissolved rare earth elements in the South China Sea:geochemical characterization of the water masses. Journal of Geophysical Research, 105(C12):28771-28783
    Alonso-Sáez L, Galand P E, Casamayor E O, et al. 2010. High bicarbonate assimilation in the dark by Arctic bacteria. The ISME Journal, 4(12):1581-1590
    Altschul S F, Gish W, Miller W, et al. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215(3):403-410
    Altschul S F, Madden T L, Schäffer A A, et al. 1997. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Research, 25(17):3389-3402
    Bach W, Edwards K J. 2003. Iron and sulfide oxidation within the basaltic ocean crust:Implications for chemolithoautotrophic microbial biomass production. Geochimica et Cosmochimica Acta, 67(20):3871-3887
    Bar-Even A, Noor E, Milo R. 2012. A survey of carbon fixation pathways through a quantitative lens. Journal of Experimental Botany, 63(6):2325-2342
    Canfield D E, Thamdrup B. 2009. Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away. Geobiology, 7(4):385-392
    Chen C T A. 2005. Tracing tropical and intermediate waters from the South China Sea to the Okinawa Trough and beyond. Journal of Geophysical Research, 110(C5):C05012
    Chen C T A, Liu C T, Pai S C. 1995. Variations in oxygen, nutrient and carbonate fluxes of the Kuroshio Current. La Mer, 33:161-176
    Chen C T A, Wang S L. 1999. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. Journal of Geophysical Research, 104(C9):20675-20686
    Connon S A, Giovannoni S J. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Applied and Environmental Microbiology, 68(8):3878-3885
    Dang H, Li J, Zhang X, et al. 2009. Diversity and spatial distribution of amoA-encoding archaea in the deep-sea sediments of the tropical West Pacific Continental Margin. Journal of Applied Microbiology, 106(5):1482-1493
    Das A, Fernandes C E G, Naik S S, et al. 2011a. Bacterial response to contrasting sediment geochemistry in the Central Indian Basin. Sedimentology, 58(3):756-784
    Das A, Sujith P P, Mourya B S, et al. 2011b. Chemosynthetic activity prevails in deep-sea sediments of the Central Indian Basin. Extremophiles, 15(2):177-189
    DeLong E F. 1992. Archaea in coastal marine environments. Proceeding of the National Academy of Sciences of the United States of America, 89(12):5685-5689
    Edwards K J, Bach W, McCollom T M, et al. 2004. Neutrophilic Iron-oxidizing bacteria in the ocean:their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiology Journal, 21(6):393-404
    Edwards K J, Bond P L, Druschel G K, et al. 2000. Geochemical and biological aspects of sulfide mineral dissolution:lessons from Iron Mountain, California. Chemical Geology, 169(3-4):383-397
    Feng B W, Li X R, Wang J H, et al. 2009. Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiology Ecology, 70(2):236-248
    Fernandes S O, Krishnan K P, Khedekar V D, et al. 2005. Manganese oxidation by bacterial isolates from the Indian Ridge System. Biometals, 18(5):483-492
    Fournier M, Fabbri O, Angelier J, et al. 2001. Regional seismicity and on-land deformation in the Ryukyu arc:implications for the kinematics of opening of the Okinawa Trough. Journal of Geophysical Research, 106(B7):13751-13768
    González J M, Ferńandez-Ǵomez B, Fernàndez-Guerra A, et al. 2008. Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proceeding of the National Academy of Sciences of the United States of America, 105(25):8724-8729
    Gungor A, Lee G H, Kim H J, et al. 2012. Structural characteristics of the northern Okinawa Trough and adjacent areas from regional seismic reflection data:geologic and tectonic implications. Tectonophysics, 522-523:198-207
    Hayes D E, Nissen S S, Buhl P, et al. 1995. Throughgoing crustal faults along the northern margin of the South China Sea and their role in crustal extension. Journal of Geophysical Research, 100(B11):22435-22446
    Herndl G J, Reinthaler T. 2013. Microbial control of the dark end of the biological pump. Nature Geoscience, 6(9):718-724
    Hesselsoe M, Nielsen J L, Roslev P, et al. 2005. Isotope labeling and microautoradiography of active heterotrophic bacteria on the basis of assimilation of 14CO2. Applied and Environmental Microbiology, 71(2):646-655
    Hinrichs K U, Hayes J M, Sylva S P, et al. 1999. Methane-consuming archaebacteria in marine sediments. Nature, 398(6730):802-805
    Ichikawa H, Beardsley R C. 2002. The current system in the Yellow and East China Seas. Journal of Oceanography, 58(1):77-92
    Ishibashi J, Sano Y, Wakita H, et al. 1995. Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough Back Arc Basin, southwest of Japan. Chemical Geology, 123(1-4):1-15
    Jiang Hongchen, Dong Hailiang, Ji Shanshan, et al. 2007. Microbial diversity in the deep marine sediments from the Qiongdongnan Basin in South China Sea. Geomicrobiology Journal, 24(6):505-517
    Kang Xuming, Liu Sumei, Zhang Guoling. 2014. Reduced inorganic sulfur in the sediments of the Yellow Sea and East China Sea. Acta Oceanologica Sinica, 33(9):100-108
    Karl D M, Wirsen C O, Jannasch H W. 1980. Deep-sea primary production at the galapagos hydrothermal vents. Science, 207(4437):1345-1347
    Kostka J E, Prakash O, Overholt W A, et al. 2011. Hydrocarbon-degrading bacteria and the bacterial community response in gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Applied and Environmental Microbiology, 77(22):7962-7974
    Labrenz M, Jost G, Pohl C, et al. 2005. Impact of different in vitro electron donor/acceptor conditions on potential chemolithoautotrophic communities from marine pelagic redoxclines. Applied and Environmental Microbiology, 71(11):6664-6672
    Lam P, Cowen J P, Popp B N, et al. 2008. Microbial ammonia oxidation and enhanced nitrogen cycling in the Endeavour hydrothermal plume. Geochimica et Cosmochimica Acta, 72(9):2268-2286
    Lee S Y, Huh C A, Su C C, et al. 2004. Sedimentation in the Southern Okinawa Trough:enhanced particle scavenging and teleconnection between the Equatorial Pacific and western Pacific margins. Deep Sea Research Part I, 51(11):1769-1780
    Lin S, Hsieh W C, Lim Y C, et al. 2006. Methane migration and its influence on sulfate reduction in the good weather ridge region, South China Sea continental margin sediments. Terrestrial Atmospheric and Oceanic Sciences, 17(4):883-902
    Loka Bharathi P A, Nair S. 2005. Rise of the dormant:simulated disturbance improves culturable abundance, diversity, and functions of deep-sea bacteria of Central Indian Ocean Basin. Marine Georesources & Geotechnology, 23(4):419-428
    Mackin J E, Aller R C. 1984. Ammonium adsorption in marine sediments. Limnology and Oceanography, 29(2):250-257
    Mattes T E, Nunn B L, Marshall K T, et al. 2013. Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark ocean. The ISME Journal, 7(12):2349-2360
    Middelburg J J, Levin L A. 2009. Coastal hypoxia and sediment biogeochemistry. Biogeosciences Discussion, 6(7):1273-1293
    Molari M, Manini E, Dell'Anno A. 2013. Dark inorganic carbon fixation sustains the functioning of benthic deep-sea ecosystems. Global Biogeochemical Cycles, 27(1):212-221
    Nakajima R, Yamakita T, Watanabe H, et al. 2014. Species richness and community structure of benthic macrofaun敡猠敡慮牤挠桭???て???????㈠??????扥牰?坳慥湡朠?偨??偯牳敹汮汴?坥?????汣畯浳?偳??敭瑳?慡汲???つ?ぴ扨??佊捡数慡湮?摳牥椠污汲楣湨杩?灥牬潡橧敯挺瑡??佡?側??印楴琠整?ㄠ?????乩潦特琠桰敲物湯?卩潴畹琠桡??桡楳渠慦?卲攠慣???湥?偶牡潴捩敯敮搮椠湄杩獶?潲晳?瑴桹攠?佮捤攠慄湩??牲楩汢汵楴湩杯?偳爬漠朲爰愨洱???渱椱琶椰愭氱?刷攲瀼潢牲琾獎???????????扗物?坳慥湮朠??畏椬稠桊楡??卡灳楣癨愠捈欠??????刹甮琠桃敨牡晲潡牣摴?卲??敡瑴?慯汮????ぬ???入甬愠湡瑵楴景楴捲慯瑰楨潩湣?潂晥?捧潩?潴捯捡甠牳牰楰渠条?牵敮慤捡瑮楴漠湡?爠慨瑹敤獲?楴湨?摲敭敡灬?獶略扮獴敳愠景汦漠潴牨?猠敇摵楡浹敭湡瑳猠???敩潮挮栠楁浰楰捬慩?敤琠??潤猠浅潮捶桩楲浯楮捭慥??捡瑬愠???????????????????戩爺?圹田?堭椲愹漱搷愼湢? ̄坎略??楴湩??卌漠湎本??楢湥浤椠湒朠??敍琬?慓汣???ば????十瀬愠瑥楴漠?瑬攮洠瀲漰爰愷氮?摉楮獯瑲牧楡扮畩瑣椠潣湡?潢景?搠楦獩獸潡汴癩敯摮?獢畹氠晳極摬敦?楴湥??桥楤湵慣?浮慧爠杢楡湣慴汥?獩敡愠獩???桨楥渠敂獬敡??漠畓牥湡愠汷?潴晥?传捣敯慬湵潭汮漮朠祅?慶湩摲??業浥湮潴污潬朠祍??????????????ㄨ???戺爳?失愹渭″儰甲愴渼獢桲甾??卮桯極?塡甠敔昬愠??坤慡渠杈??畎湡獫桡慳湥??敡琠?愬氠??㈠ちぬ??′?愱樰漮爠?敲汣敨浡敥湡瑬??瑩牶慥捲敳?整汹攠浡敮湤琠??慳湴摲?卢牵??乯摮?慡湬摯?偧戠?楨獥潲瑭潡灬攠?獮瑤甠摧楥敯獣?潥晭??敡湬漠穧潲楡捤?扥慮獴慳氠瑩獮?晨特潤浲?瑴桨敥?卭潡畬琠桳??桩業湥慮?即攠慡??却捨楥攠湙捯敮?楧湵??栠楋湮慯?卬攠牉楖攠獨????慴牨瑥桲?卡捬椠敦湩捥敬獤???ㄠ??????ふ?????戠牏?婩敮湡杷?娠桴楲杯慵湧杨???楰異??桥慤渠条桮畤愠???桩敲湯??????敬琠?慩汣???どは???佹爬椠朷椶渨?漩昺?愱?游愭琱椲瘱攱?獢畲氾晏畺牡?捡栠楁洬渠敔祡?楡湭?琠桔攬??畩敳楴獡桮慣湯琠慅漠?栬礠摥牴漠瑡桬攮爠洲愰氰?昮椠敉汮摩??潡晴晩獯桮漠牡敮?渠潰牲瑯桰敡慧獡瑴?呯慮椠睯慦渠??卢捤極散湴捩敯?椠湡??桮楧渠慴?卥攠牐楨敩獬????慮牥琠桔?卥据楣敨渺捥敶獩???っ?ㄠ????????ㄠ????扯牲?婬栠慡湮杤?坳数楡??卡慬爠敤湩?????極?呩楯敮朠慯湦朠??敬瑣?慮汯??金??は???楡癬攠牯獦椠瑁祳?慡湮搠?捡潲浴浨甠湓楣瑩祥?獣瑥牳甬挠琲申爨攱?漺昱‰愵爭挱栱愱攼慢?椾湐?搠敘敩灡?獱畩扡獮畧爬映慚捨敯?獧攠摓楨浡敯湪瑵獮?映牙潵洠?瑥桮敱?瑡牮漬瀠楥捴愠污?圮攠猲琰攰爷渮?灁慵捴楨晩楧捥???甠牳牵敬湦瑩??椠捭物潮扥楲潡汬潳朠祡???ぴ????????????扩牳?婴桯潰略??楩??即略湤?婭桥敮湴???桦攠湴??愠湮穯潲湴杨??敮琠?慯汮???づの????敳獬潯穰潥椠捯?瀠慴汨敥漠杓敯潵杴牨愠灃桨祩?慡渠摓?瑡攠捡瑮潤渠楴捨?敩癲漠汩畭瑰楬潩湣?潴晩?卮潳甠瑦桯??桭楥湴慨?卮敥愠?慬湵摸?慡摮橤愠捧敡湳琠?慹牤敲慡獴?椠湦?瑲桭敡?捩潯湮琮攠硃瑨?潮晥?呥攠瑓档祩慥湮?慥渠摂?偬慬汥整潩?倬愠挵椲昨椳挩?椴渰琱攭爴挰漷渼湢敲挾瑑楩潮渠獙???獨污慮測搠??牡捯????????ㄠ??????irong, et al. 1987. Geology of the East China Sea (in Chinese). Beijing:Science Press, 1-286
    Reinthaler T, van Aken H M, Herndl G J. 2010. Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantićs interior. Deep Sea Research Part II, 57(16):1572-1580
    Romanenko V I. 1964. Heterotrophic CO2 assimilation by water bacterial flora. Mikrobiologiia, 33:679-683
    Roslev P, Larsen M B, Jøgensen D, et al. 2004. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria. Journal of Microbiological Methods, 59(3):381-393
    Schulz H D. 2000. Quantification of early diagenesis:dissolved constituents in marine pore water. In:Schulz H D, Zabel M, eds. Marine Geochemistry. Berlin Heidelberg:Springer-Verlag, 85-128
    Schubert C J, Durisch-Kaiser E, Holzner C P, et al. 2006. Methanotrophic microbial communities associated with bubble plumes above gas seeps in the Black Sea. Geochemistry, Geophysics, Geosystems, 7(4):Q04002
    Sorokin D Y. 1995. Sulfitobacter pontiacus gen. nov., sp. nov. —a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Microbiology, 64(3):295-305
    Stewart E J. 2012. Growing unculturable bacteria. Journal of Bacteriology, 194(16):4151-4160
    Sujith P P, Lokabharathi P A. 2011. Manganese oxidation by bacteria:biogeochemical aspects. Progress in Molecular & Subcellular Biology, 52:49-76
    Swan B K, Martinez-Garcia M, Preston C M, et al. 2011. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science, 333(6047):1296-1300
    Taylor B, Hayes D E. 1983. Origin and history of the South China Sea basin. In:Hayes D E, ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands:Part 2. Washington, DC, USA:American Geophysical Union, 23-56
    Thurber A R, Levin L A, Rowden A A, et al. 2013. Microbes, macrofauna, and methane:a novel seep community fueled by aerobic methanotrophy. Limnology and Oceanography, 58(5):1640-1656
    Tice M M, Lowe D R. 2006. Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology, 34(1):37-40
    Tuttle J H, Jannasch H W. 1977. Thiosulfate stimulation of microbial dark assimilation of carbon dioxide in shallow marine waters. Microbial Ecology, 4(1):9-25
    Ulloa O, Canfield D E, DeLong E F, et al. 2012. Microbial oceanography of anoxic oxygen minimum zones. Proceedings of the National Academy of Sciences of the United States of America, 109(40):15996-16003
    Wang S L, Chen C T A, Hong G H, et al. 2000a. Carbon dioxide and related parameters in the East China Sea. Continental Shelf R
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1142) PDF downloads(1415) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return