DUAN Yongliang, LIU Hongwei, YU Weidong, HOU Yijun. The mean properties and variations of the Southern Hemisphere subpolar gyres estimated by Simple Ocean Data Assimilation (SODA) products[J]. Acta Oceanologica Sinica, 2016, 35(7): 8-13. doi: 10.1007/s13131-016-0901-2
Citation: DUAN Yongliang, LIU Hongwei, YU Weidong, HOU Yijun. The mean properties and variations of the Southern Hemisphere subpolar gyres estimated by Simple Ocean Data Assimilation (SODA) products[J]. Acta Oceanologica Sinica, 2016, 35(7): 8-13. doi: 10.1007/s13131-016-0901-2

The mean properties and variations of the Southern Hemisphere subpolar gyres estimated by Simple Ocean Data Assimilation (SODA) products

doi: 10.1007/s13131-016-0901-2
  • Received Date: 2015-06-02
  • Rev Recd Date: 2015-08-14
  • Based on the Simple Ocean Data Assimilation (SODA) products, we study the mean properties and variations of the Southern Hemisphere subpolar gyres (SHSGs) in this paper. The results show that the gyre strengths in the SODA estimates are (55.9±9.8)×106 m3/s for the Weddell Gyre (WG), (37.0±6.4)×106 m3/s for the Ross Gyre (RG), and (27.5±8.2)×106 m3/s for the Australian-Antarctic Gyre (AG), respectively. There exists distinct connectivity between the adjacent gyres and then forms an oceanic super gyre structure in the southern subpolar oceans. And the interior exchanges are about (8.0±3.2)×106 m3/s at around 70°E and (4.3±3.1)×106 m3/s at around 140°E. The most pronounced variation for all three SHSGs occurs on the seasonal time scale, with generally stronger (weaker) SHSGs during austral winter (summer). And the seasonal changes of the gyre structures show that the eastern boundary of the WG and AG extends considerably further east during winter and the interior exchange in the super gyre structure increases accordingly. The WG and RG also show significant semi-annual changes. The correlation analyses confirm that the variations of the gyre strengths are strongly correlated with the changes in the local wind forcing on the semi-annual and seasonal time scales.
  • loading
  • Aoki S, Fujii N, Ushio S, et al. 2008. Deep western boundary current and southern frontal systems of the Antarctic Circumpolar Cur-rent southeast of the Kerguelen Plateau. Journal of Geophysic-al Research, 113(C8):2092-2112
    Aoki S, Sasai Y, Sasaki H, et al. 2010. The cyclonic circulation in the Australian-Antarctic basin simulated by an eddy-resolving gen-eral circulation model. Ocean Dynamics, 60(3):743-757
    Assmann K M, Timmermann R. 2005. Variability of dense water formation in the Ross Sea. Ocean Dynamics, 55(2):68-87
    Beckmann A, Hellmer H H, Timmermann R. 1999. A numerical mod-el of the Weddell Sea:large-scale circulation and water mass distribution. Journal of Geophysical Research, 104(C10): 23375-23391
    Bindoff N L, Rosenberg M A, Warner M J. 2000. On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150°E. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 47(12-13):2299-2326
    Carton J A, Giese B S, Grodsky S A. 2005. Sea level rise and the warm-ing of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. Journal of Geophysical Research:Oceans, 110(C9):doi: 10.1029/2004JC002817
    Carton J A, Giese B S. 2008. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Monthly Weather Re-view, 136(8):2999-3017
    Chu P C, Fan Chenwu. 2007. An inverse model for calculation of glob-al volume transport from wind and hydrographic data. Journal of Marine Systems, 65(1-4):376-399
    Cisewski B, Strass V H, Leach H. 2011. Circulation and transport of water masses in the Lazarev Sea, Antarctica, during summer and winter 2006. Deep Sea Research Part I:Oceanographic Re-search Papers, 58(2):186-199
    Commodari V, Pierini S. 1999. A wind and boundary driven circula-tion model of the Ross Sea. In:Spezie G, Manzella G M R, eds. Oceanography of the Ross Sea Antarctica. Milano:Springer, 135-144
    Couldrey M P, Jullion L, Garabato A C N, et al. 2013. Remotely in-duced warming of Antarctic Bottom Water in the eastern Wed-dell Gyre. Geophysical Research Letters, 40(11):2755-2760
    Dellnitz M, Froyland G, Horenkamp C, et al. 2009. Seasonal variabil-ity of the subpolar gyres in the Southern Ocean:a numerical in-vestigation based on transfer operators. Nonlinear Processes in Geophysics, 16(6):655-664
    Drucker R, Martin S, Kwok R. 2011. Sea ice production and export from coastal polynyas in the Weddell and Ross Seas. Geophysical Research Letters, 38(17):L17502, 752-767
    Duan Yongliang, Hou Yijun, Liu Hongwei, et al. 2013. The water mass variability and southward shift of the Southern Hemisphere mid-depth supergyre. Acta Oceanologica Sinica, 32(11):74-81
    Fahrbach E, Hoppema M, Rohardt G, et al. 2011. Warming of deep and abyssal water masses along the Greenwich Meridian on decadal time scales:the Weddell Gyre as a heat buffer. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 58(25-26):2509-2523
    Garabato A C N, Williams A P, Bacon S. 2014. The three-dimensional overturning circulation of the Southern Ocean during the WOCE era. Progress in Oceanography, 120:41-78
    Gordon A L, Martinson D G, Taylor H W. 1981. The wind-driven cir-culation in the Weddell-Enderby Basin. Deep Sea Research Part A:Oceanographic Research Papers, 28(2):151-163
    Gouretski V. 1999. The large-scale thermohaline structure of the Ross Gyre. In:Spezie G, Manzella G M R. Oceanography of the Ross Sea Antarctica. Milano:Springer, 77-100
    Johns T C, Durman C F, Banks H T, et al. 2006. The new Hadley Centre climate model (HadGEM1):evaluation of coupled simu-lations. Journal of Climate, 19(7):1327-1353
    Jullion L, Jones S C, Garabato A C N, et al. 2010. Wind-controlled ex-port of Antarctic Bottom Water from the Weddell Sea. Geophys-ical Research Letters, 37(9):493-533
    Jullion L, Garabato A C N, Bacon S, et al. 2014. The contribution of the Weddell Gyre to the lower limb of the Global Overturning Circulation. Journal of Geophysical Research, 119(6):3357-3377
    Klatt O, Fahrbach E, Hoppema M, et al. 2005. The transport of the Weddell Gyre across the Prime Meridian. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 52(3-4):513-528
    Liu Hongwei, Zhang Qilong, Duan Yongliang, et al. 2011. The three-dimensional structure and seasonal variation of the north Pa-cific meridional overturning circulation. Acta Oceanologica Sinica, 30(3):33-42
    Mathiot P, Goosse H, Fichefet T, et al. 2011. Modelling the seasonal variability of the Antarctic Slope Current. Ocean Science, 7(4):455-470
    Mazloff M R, Heimbach P, Wunsch C. 2010. An eddy-permitting Southern Ocean state estimate. Journal of Physical Oceano-graphy, 40(5):880-899
    McCartney M S, Donohue K A. 2007. A deep cyclonic gyre in the Aus-tralian-Antarctic Basin. Progress in the Oceanography, 75(4):675-750
    Meijers A J S, Klocker A, Bindoff N L, et al. 2010. The circulation and water masses of the Antarctic shelf and continental slope between 30 and 80°E. Deep Sea Research Part Ⅱ:Topical Stud-ies in Oceanography, 57(9-10):723-737
    Meredith M P, Garabato A C N, Gordon A L, et al. 2008. Evolution of the deep and bottom waters of the Scotia Sea, Southern Ocean, during 1995-2005. Journal of Climate, 21(13):3327-3343
    Nú.ez-Riboni I, Fahrbach E. 2009. Seasonal variability of the Antarc-tic Coastal Current and its driving mechanisms in the Weddell Sea. Deep Sea Research Part I:Oceanographic Research Pa-pers, 56(11):1927-1941
    Orsi A H, Nowlin Jr W D, Whitworth Ⅲ T. 1993. On the circulation and stratification of the Weddell Gyre. Deep Sea Research Part I:Oceanographic Research Papers, 40(1):169-203
    Park Y H, Vivier F, Roquet F, et al. 2009. Direct observations of the ACC transport across the Kerguelen Plateau. Geophysical Re-search Letters, 36(18):L18603252-260
    Purkey S G, Johnson G C. 2010. Warming of global abyssal and deep southern Ocean waters between the 1990s and 2000s:contribu-tions to global heat and sea level rise budgets. Journal of Cli-mate, 23(23):6336-6351
    Reid J L. 1997. On the total geostrophic circulation of the Pacific Ocean:flow patterns, tracers, and transports. Progress in Oceanography, 39(4):263-352
    Rickard G J, Roberts M J, Williams M J M, et al. 2010. Mean circula-tion and hydrography in the Ross Sea sector, Southern Ocean:representation in numerical models. Antarctic Science, 22(5):533-558
    Rintoul S R. 2007. Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific oceans. Geophysical Research Letters, 34(6):125-141
    Rodehacke C B, Hellmer H H, Beckmann A, et al. 2007. Formation and spreading of Antarctic deep and bottom waters inferred from a chlorofluorocarbon (CFC) simulation. Journal of Geo-physical Research:Oceans, 112(C9):244-245
    Roquet F, Park Y H, Guinet C, et al. 2009. Observations of the Fawn Trough Current over the Kerguelen Plateau from instrumented elephant seals. Journal of Marine Systems, 78(3):377-393
    Russell J L, Stouffer R J, Dixon K W. 2006. Intercomparison of the Southern Ocean circulations in IPCC coupled model control simulations. Journal of Climate, 19(18):4560-4575
    Schr.der M, Fahrbach E. 1999. On the structure and the transport of the eastern Weddell Gyre. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 46(1-2):501-527
    Sen Gupta A, Santoso A, TaschettoA S, et al. 2009. Projected changes to the Southern Hemisphere ocean and sea ice in the IPCC AR4 climate models. Journal of Climate, 22(11):3047-3078
    Shenoi S S C, Shankar D, Shetye S R. 2005. On the accuracy of the simple ocean data assimilation analysis for estimating heat budgets of the near-surface Arabian Sea and Bay of Bengal. Journal of Physical Oceanography, 35(3):395-400
    Sultan E, Mercier H, Pollard R T. 2007. An inverse model of the large scale circulation in the South Indian Ocean. Progress in Ocean-ography, 74(1):71-94
    Thorpe S E, Murphy E J, Watkins J L. 2007. Circumpolar connections between Antarctic krill (Euphausia superba Dana) populations:investigating the roles of ocean and sea ice transport. Deep Sea Research Part I:Oceanographic Research Papers, 54(5):792-810
    Wang Zhaomin, Meredith M P. 2008. Density-driven Southern Hemi-sphere subpolar gyres in coupled climate models. Geophysical Research Letters, 35(14):L14608, doi: 10.1029/2008GL034344
    Wang Zhaomin. 2013. On the response of Southern Hemisphere sub-polar gyres to climate change in coupled climate models. Journal of Geophysical Research, 118(3):1070-1086
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1458) PDF downloads(567) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return