Citation: | JI Dehua, XU Yan, XIAO Haidong, CHEN Changsheng, XU Kai, XIE Chaotian. Superoxide dismutase genes in Pyropia haitanensis: molecular cloning, characterization and mRNA expression[J]. Acta Oceanologica Sinica, 2016, 35(6): 101-111. doi: 10.1007/s13131-016-0873-2 |
Alscher R G, Erturk N, Heath L S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53(372): 1331-1341
|
Armbrust E E, Berges J A, Bowler C, et al. 2004. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science, 306(5693): 79-86
|
Blouin N A, Brodie J A, Grossman A C, et al. 2011. Porphyra: a marine crop shaped by stress. Trends in Plant Science, 16(1): 29-37
|
Burritt D J, Larkindale J, Hurd C L. 2002. Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta, 215(5): 829-838
|
Chen Changsheng, Ji Dehua, Xie Chaotian, et al. 2008. Preliminary study on selecting the high temperature resistance strains and economic traits of Porphyra haitanensis. Haiyang Xuebao (in Chinese), 30(5): 100-106
|
Contreras-Porcia L, Thomas D, Flores V, et al. 2011. Tolerance to ox-idative stress induced by desiccation in Porphyra columbina (Bangiales, Rhodophyta). Journal of Experimental Botany, 62(6): 1815-1829
|
Cirulis J T, Scott J A, Ross G M. 2013. Management of oxidative stress by microalgae. Canadian Journal of Physiology and Pharmaco-logy, 91(1): 15-21
|
Davison I R, Pearson G A. 1996. Stress tolerance in intertidal sea-weeds. Journal of Phycology, 32(2): 197-211
|
Fink R C, Scandalios J G. 2002. Molecular evolution and structure-function relationships of the superoxide dismutase gene famil-ies in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Archives of Biochem-istry and Biophysics, 399(1): 19-36
|
Fridovich I. 1995. Superoxide radical and superoxide dismutases. An-nual Review of Biochemistry, 64(1): 97-112
|
Kliebenstein D J, Monde R A, Last R L. 1998. Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regula-tion and protein localization. Plant Physiology, 118(2): 637-650
|
Kumar M, Gupta V, Trivedi N, et al. 2011. Desiccation induced oxid-ative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environment-al and Experimental Botany, 72(2): 194-201
|
Liu Yenchun. 2009. Mechanism for differential desiccation tolerance in porphyra species[dissertation]. Boston: Northeastern Uni-versity
|
Lu Ning, Zang Xiaonan, Zhang Xuecheng, et al. 2012. Gene cloning, expression and activity analysis of manganese superoxide dis-mutase from two strains of Gracilaria lemaneiformis (Gracilari-aceae, Rhodophyta) under Heat Stress. Molecules, 17(4): 4522-4532
|
Matsuzaki M, Misumi O, Shin-I T, et al. 2004. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature, 428(6983): 653-657
|
Mittler R, Vanderauwera S, Gollery M, et al. 2004. Reactive oxygen gene network of plants. Trends in Plant Science, 9(10): 490-498
|
Sahoo D, Tang Xiaorong, Yarish C. 2002. Porphyra-the economic sea-weed as a new experimental system. Current Science, 83(11): 1313-1316
|
Scandalios J G. 1997. Molecular genetics of superoxide dismutase in plants. In: Scandalios J G, ed. Oxidative Stress and the Molecu-lar Biology of Antioxidant Defenses. New York: Cold Spring Harbor Laboratory Press
|
Tamura K, Peterson D, Peterson N, et al. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evol-utionary distance, and maximum parsimony methods. Molecu-lar Biology and Evolution, 28(10): 2731-2739
|
Tomanek L. 2011. Environmental proteomics: changes in the proteo-me of marine organisms in response to environmental stress, pollutants, infection, symbiosis and development. Annual Re-view of Marine Science, 3(3): 373-399
|
Wang Feng, Wang Hongbin, Liu Bing, et al. 2006a. Cloning and char-acterization of a novel splicing isoform of the iron-superoxide dismutase gene in rice (Oryza sativa L.). Plant Cell Reports, 24(12): 734-742
|
Wang Rong, Liu Tao, Zhou Xiaojun, et al. 2006b. Cloning and se-quence analysing of Mn-SOD Gene from Porphyra yezoensis Udea. Chinese High Technology Letters (in Chinese), 16(5): 522-528
|
Xie Chaotian, Li Bing, Xu Yan, et al. 2013. Characterization of the global transcriptome for Pyropia haitanensis (Bangiales, Rhodophyta) and development of cSSR markers. BMC Genom-ics, 14(1): 107
|
Xie Jia, Xu Yan, Ji Dehua, et al. 2014. Physiological response of the an-tioxidant system in Pyropia haitanensis to desiccation stress. Journal of Fishery Sciences of China (in Chinese), 21(2): 405-412
|
Xu Yan, Chen Changsheng, Ji Dehua, et al. 2014. Proteomic profile analysis of Pyropia haitanensis in response to high-temperat-ure stress. Journal of Applied Phycology, 26(1): 607-618
|
Yan Xinghong, Lv Feng, Liu Changjun, et al. 2010. Selection and char-acterization of a high-temperature tolerant strain of Porphyra haitanensis Chang et Zheng (Bangiales, Rhodophyta). Journal of Applied Phycology, 22(4): 511-516
|
Zhang Xuecheng, Qin Song, Ma Jiahai, et al. 2005. The Genetics of Marine Algae (in Chinese). Beijing: China Agriculture Press, 184-203
|
Zhang Yuan, Xie Chaotian, Chen Changsheng, et al. 2011. Physiolo-gical responses of gametophytic blades of Porphyra haitanen-sis to rising temperature stresses. Journal of Fisheries of China (in Chinese), 35(3): 379-386
|
1. | Dehua Ji, Yichi Zhang, Bao Zhang, et al. Investigating the Mechanisms Underlying the Low Irradiance-Tolerance of the Economically Important Seaweed Species Pyropia haitanensis. Life, 2023, 13(2): 481. doi:10.3390/life13020481 | |
2. | Yangying Mao, Rui Yang, Lei Ke, et al. Using oligoagar to improve the survival of Neoporphyra haitanensis conchocelis infected by Vibrio mediterranei 117-T6. Journal of Applied Phycology, 2023, 35(2): 753. doi:10.1007/s10811-023-02918-z | |
3. | Wenlei Wang, Hongyan Zheng, Jian Wen, et al. Early signaling events in the heat stress response of Pyropia haitanensis revealed by phosphoproteomic and lipidomic analyses. Algal Research, 2022, 67: 102837. doi:10.1016/j.algal.2022.102837 | |
4. | Junkai Zhu, Mengya Xu, Qiqin Liu, et al. Bacteriophage therapy on the conchocelis of Pyropia haitanensis (Rhodophyta) infected by Vibrio mediterranei 117-T6. Aquaculture, 2021, 531: 735853. doi:10.1016/j.aquaculture.2020.735853 | |
5. | Wenlei Wang, Lei Xing, Kai Xu, et al. Salt stress-induced H2O2 and Ca2+ mediate K+/Na+ homeostasis in Pyropia haitanensis. Journal of Applied Phycology, 2020, 32(6): 4199. doi:10.1007/s10811-020-02284-0 | |
6. | Jianzhi Shi, Wenlei Wang, Yinghui Lin, et al. Insight into transketolase of Pyropia haitanensis under desiccation stress based on integrative analysis of omics and transformation. BMC Plant Biology, 2019, 19(1) doi:10.1186/s12870-019-2076-4 | |
7. | Bao Le, Mawra Nadeem, Seung-Hwan Yang, et al. Effect of silicon in Pyropia yezoensis under temperature and irradiance stresses through antioxidant gene expression. Journal of Applied Phycology, 2019, 31(2): 1297. doi:10.1007/s10811-018-1605-0 |