WANG Jing, KAN Jinjun, BORECKI Laura, ZHANG Xiaodong, WANG Dongxiao, SUN Jun. A snapshot on spatial and vertical distribution of bacterial communities in the eastern Indian Ocean[J]. Acta Oceanologica Sinica, 2016, 35(6): 85-93. doi: 10.1007/s13131-016-0871-4
Citation: WANG Jing, KAN Jinjun, BORECKI Laura, ZHANG Xiaodong, WANG Dongxiao, SUN Jun. A snapshot on spatial and vertical distribution of bacterial communities in the eastern Indian Ocean[J]. Acta Oceanologica Sinica, 2016, 35(6): 85-93. doi: 10.1007/s13131-016-0871-4

A snapshot on spatial and vertical distribution of bacterial communities in the eastern Indian Ocean

doi: 10.1007/s13131-016-0871-4
  • Received Date: 2014-12-17
  • Rev Recd Date: 2015-07-31
  • Besides being critical components of marine food web, microorganisms play vital roles in biogeochemical cycling of nutrients and elements in the ocean. Currently little is known about microbial population structure and their distributions in the eastern Indian Ocean. In this study, we applied molecular approaches including polymerase chain reaction-denaturant gradient gel electrophoresis (PCR-DGGE) and High-Throughput next generation sequencing to investigate bacterial 16S rRNA genes from the equatorial regions and the adjacent Bay of Bengal in the eastern Indian Ocean. In general, Bacteroidetes, Proteobacteria (mainly Alpha, and Gamma), Actinobacteria, Cyanobacteria and Planctomycetes dominated the microbial communities. Horizontally distinct spatial distribution of major microbial groups was observed from PCR-DGGE gel image analyses. However, further detailed characterization of community structures by pyrosequencing suggested a more pronounced stratified distribution pattern: Cyanobacteria and Actinobacteria were more predominant at surface water (25 m); Bacteroidetes dominated at 25 m and 150 m while Proteobacteria (mainly Alphaproteobacteria) occurred more frequently at 75 m water depth. With increasing water depth, the bacterial communities from different locations tended to share high similarity, indicating a niche partitioning for minor groups of bacteria recovered with high throughput sequencing approaches. This study provided the first "snapshot" on biodiversity and spatial distribution of Bacteria in water columns in the eastern Indian Ocean, and the findings further emphasized the potential functional roles of these microbes in energy and resource cycling in the eastern Indian Ocean.
  • loading
  • Amaral-Zettler L, Artigas L F, Baross J, et al. 2010. A global census of marine microbes. In: McIntyre A D, ed. Life in the World's Oceans: Diversity, Distribution, and Abundance. Oxford: Wiley-Blackwell Publishing Ltd, 223-245
    Arrigo K R. 2005. Marine microorganisms and global nutrient cycles. Nature, 437(7057): 349-355
    Azam F, Steward G F, Smith D C, et al. 1994. Significance of bacteria in carbon fluxes in the Arabian Sea. Proc Proceedings of the In-dian Academy of Sciences-Earth and Planetary Sciences, 103(2): 341-351
    Bharathi P A L, Nair S. 2005. Rise of the dormant: simulated disturb-ance improves culturable abundance, diversity, and functions of deep-sea bacteria of Central Indian Ocean Basin. Mar Geore-sour Geotechnol, 23(4): 419-428
    Bouteiller A L, Blanchot J, Rodier M. 1992. Size distribution patterns of phytoplankton in the western Pacific: towards a generaliza-tion for the tropical open ocean. Deep Sea Research Part A: Oceanographic Research Papers, 39(5): 805-823
    Brinkhoff T, Giebel H A, Simon M. 2008. Diversity, ecology, and gen-omics of the Roseobacter clade: a short overview. Arch Microbi-ol, 189(6): 531-539
    Brown M V, Philip G K, Bunge J A, et al. 2009. Microbial community structure in the North Pacific Ocean. ISME J, 3(12): 1374-1386
    Buchan A, Neidle E L, Moran M A. 2004. Diverse organization of genes of the β-ketoadipate pathway in members of the marine Roseobacter lineage. Appl Environ Microbiol, 70(3): 1658-1668
    Burkill P H. 2002. Microbial dynamics. In: Watts L, Burkill P, Smith S, eds. Arabian, Sea Process Study. Bergen, Norway: JGOFS Inter-national Planning Office
    Clarke K R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust J Ecol, 18(1): 117-143
    Cole S E, LaRiviere F J, Merrikh C N, et al. 2009. A convergence of rRNA and mRNA quality control pathways revealed by mech-anistic analysis of nonfunctional rRNA decay. Mol Cell, 34(4): 440-450
    da Silva M A C, Cavalett A, Spinner A, et al. 2013. Phylogenetic identi-fication of marine bacteria isolated from deep-sea sediments of the eastern South Atlantic Ocean. SpringerPlus, 2(1): 127, doi: 10.1186/2193-1801-2127
    Du Jikun, Xiao Kai, Li Li, et al. 2013. Temporal and spatial diversity of bacterial communities in coastal waters of the South China Sea. PLoS One, 8(6): e66968
    Edgar R C, Haas B J, Clemente J C, et al. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16): 2194-2200
    Emerson D, Fleming E J, McBeth J M. 2010. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Micro-biol, 64(1): 561-583
    Fennel K, Follows M, Falkowski P G. 2005. The co-evolution of the ni-trogen, carbon and oxygen cycles in the Proterozoic ocean. Am J Sci, 305(6-8): 526-545
    Fernández-Gómez B, Richter M, Schüler M, et al. 2013. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J, 7(5): 1026-1037
    Fine R A, Smethie Jr W M, Bullister J L, et al. 2008. Decadal ventila-tion and mixing of Indian Ocean waters. Deep Sea Research Part I: Oceanographic Research Papers, 55(1): 20-37
    Fuhrman J A, McCallum K, Davis A A. 1993. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol, 59(5): 1294-1302
    Fuhrman J A, Steele J A. 2008. Community structure of marine bac-terioplankton: patterns, networks, and relationships to func-tion. Aquat Microb Ecol, 53(1): 69-81
    Gl.ckner F O, Fuchs B M, Amann R. 1999. Bacterioplankton compos-itions of lakes and oceans: a first comparison based on fluores-cence in situ hybridization. Appl Environ Microbiol, 65(8): 3721-3726
    Go.i-Urriza M, de Montaudouin X, Guyoneaud R, et al. 1999. Effect of macrofaunal bioturbation on bacterial distribution in mar-ine sandy sediments, with special reference to sulphur-oxid-ising bacteria. J Sea Res, 41(4): 269-279
    Han D, Ha H K, Hwang C Y, et al. 2014. Bacterial distribution along stratified water columns in the Pacific sector of the Arctic Ocean. Deep Sea Research Part II: Topical Studies in Oceano-graphy, doi: 10.1016/j.dsr2.2014.06.007
    Hoek J, Banta A, Hubler F, et al. 2003. Microbial diversity of a sulph-ide spire located in the Edmond deep-sea hydrothermal vent field on the Central Indian Ridge. Geobiology, 1(2): 119-127
    Hood R R, Wiggert J D, Naqvi S W A. 2009. Indian ocean research: op-portunities and challenges. In: Wiggert J D, Hood R R, Naqvi S W A, eds. Indian Ocean Biogeochemical Processes and Ecolo-gical Variability. Geophysical Monograph Series Washington, DC: American Geophysical Union, 409-429
    Ivanova E P, Gorshkova N M, Sawabe T, et al. 2004. Sulfitobacter del-icatus sp. nov. and Sulfitobacter dubius sp. nov., respectively from a starfish (Stellaster equestris) and sea grass (Zostera mar-ina). Int J Syst Evol Microbiol, 54(2): 475-480
    Jason S, Siddiqui P J A, Walsby A E, et al. 1995. Cytomorphological characterization of the planktonic diazotrophic cyanobacteria Trichodesmium spp. from the Indian Ocean and Caribbean and Sargasso Seas. J Phycol, 31(3): 463-477
    Jiao Nianzhi, Zhang Yao, Zeng Yonghui, et al. 2007. Distinct distribu-tion pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol, 9(12): 3091-3099
    Johnson R M, Schwent R M, Press W. 1968. The characteristics and distribution of marine bacteria isolated from the Indian Ocean. Limnol Oceanogr, 13(4): 656-664
    Kabisch A, Otto A, K.nig S, et al. 2014. Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes ‘Gramella forsetii’ KT0803. ISME J, 8(7): 1492-1502
    Kan Jinjun, Crump B C, Wang Kui, et al. 2006a. Bacterioplankton community in Chesapeake Bay: predictable or random as-semblages. Limnol Oceanogr, 51(5): 2157-2169
    Kan Jinjun, Wang Kui, Chen Feng. 2006b. Temporal variation and de-tection limit of an estuarine bacterioplankton community ana-lyzed by denaturing gradient gel electrophoresis (DGGE). Aquat Microb Ecol, 42(1): 7-18
    Keller M, Zengler K. 2004. Tapping into microbial diversity. Nat Rev Microbiol, 2(2): 141-150
    Khandeparker R, Meena R M, Deobagkar D. 2014. Bacterial diversity in deep-sea sediments from Afanasy Nikitin seamount, equat-orial Indian Ocean. Geomicrobiol J, 31(10): 942-949
    Kirchman D L. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol, 39(2): 91-100
    Konstantinidis K T, DeLong E F. 2008. Genomic patterns of recom-bination, clonal divergence and environment in marine micro-bial populations. ISME J, 2(10): 1052-1065
    Kumar S P, Muraleedharan P M, Prasad T G, et al. 2002. Why is the Bay of Bengal less productive during summer monsoon com-pared to the Arabian Sea?. Geophys Res Lett, 29(24): 88-1-88-4, doi: 10.1029/2002GL016013
    Kumar S P, Narvekar J, Nuncio M, et al. 2009. What drives the biolo-gical productivity of the northern Indian Ocean?. In: Wiggert J D, Hood R R, Naqvi S W A, et al., eds. Indian Ocean Biogeo-chemical Processes and Ecological Variability. Washington, DC: American Geophysical Union, 33-56
    Kumar S P, Nuncio M, Narvekar J, et al. 2004. Are eddies nature's trig-ger to enhance biological productivity in the Bay of Bengal?. Geophys Res Lett, 31(7): L07309, doi: 10.1029/2003GL019274
    McCreary Jr J P, Yu Z, Hood R R, et al. 2013. Dynamics of the Indian-Ocean oxygen minimum zones. Prog Oceanogr, 112-113: 15-37
    Madhupratap M, Gauns M, Ramaiah N, et al. 2003. Biogeochemistry of the Bay of Bengal: physical, chemical and primary productiv-ity characteristics of the central and western Bay of Bengal dur-ing summer monsoon 2001. Deep Sea Research Part II: Topical Studies in Oceanography, 50(5): 881-896
    Moran M A, Armbrust E V. 2007. Genomes of sea microbes. Oceano-gr, 20(2): 47-55
    Moran M A, Belas R, Schell M A, et al. 2007. Ecological genomics of marine Roseobacters. Appl Environ Microbiol, 73(14): 4559-4569
    Mosher J J, Bernberg E L, Shevchenko O, et al. 2013. Efficacy of a 3rd generation high-throughput sequencing platform for analyses of 16S rRNA genes from environmental samples. J Microbiol Methods, 95(2): 175-181
    Muyzer G, de Waal E C, Uitterlinden A G. 1993. Profiling of complex microbial populations by denaturing gradient gel electro-phoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 59(3): 695-700
    Nair S, Bharathi P A L, Chandramohan D. 1994. Culturable hetero-trophic bacteria from the euphotic zone of the Indian-Ocean during the summer monsoon. Oceanologica Acta, 17(1): 63-68
    Nyadjro E, Subrahmanyam B, Giese B S. 2013. Variability of salt flux in the Indian Ocean during 1960-2008. Remote Sens Environ, 134: 175-193
    Oren A. 2014. Cyanobacteria: biology, ecology and evolution. In: Sharma N K, Rai A K, Stal L, eds. Cyanobacteria: An Economic Perspective. Oxford: Wiley-Blackwell, 1-20
    Pace N R. 1997. A molecular view of microbial diversity and the bio-sphere. Science, 276(5313): 734-740
    Parkes R J, Sellek G, Webster G, et al. 2009. Culturable prokaryotic di-versity of deep, gas hydrate sediments: first use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG). Environ Microbiol, 11(12): 3140-3153
    Parsons T R, Maita Y, Lalli C M. 1984. Determination of chlorophylls and total carotenoids: spectrophotometric method. In: Parsons T R, Maita Y, Lalli C M, eds. A Manual of Chemical and Biolo-gical Methods for Seawater Analysis. Oxford: Pergamin Press, 101-112
    Priest F G. 1993. Systematics and ecology of Bacillus. In: Sonenshein A L, Hoch J A, Losick R, eds. Bacillus Subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology and Molecular Ge-netics. Washington: American Society for Microbiology Press
    Pukall R, Buntefuβ D, Frühling A, et al. 1999. Sulfitobacter mediter-raneus sp. nov., a new sulfite-oxidizing member of the α-Pro-teobacteria. Int J Syst Evol Microbiol, 49(2): 513-519
    Rao C K, Naqvi S W A, Kumar M D, et al. 1994. Hydrochemistry of the Bay of Bengal: possible reasons for a different water-column cycling of carbon and nitrogen from the Arabian Sea. Mar Chem, 47(3-4): 279-290
    Rixen T, Ramaswamy V, Gaye B, et al. 2008. Monsoonal and ENSO impacts on particle fluxes and the biological pump in the Indi-an Ocean. In: Wiggert J D, Hood R R, Naqvi S W A, et al., eds. In-dian Ocean Biogeochemical Processes and Ecological Variabil-ity. Geophysical Monograph Series. Washington, DC: Americ-an Geophysical Union, 365-383
    SAS Institute Inc. 2008. SAS/STAT. 9.2 User's Guide. Cary, NC: SAS Institute Inc
    Schauer R, Bienhold C, Ramette A, et al. 2010. Bacterial diversity and biogeography in deep-sea surface sediments of the South At-lantic Ocean. ISME J, 4(2): 159-170
    Schloss P D, Westcott S L, Ryabin T, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol, 75(23): 7537-7541
    Schott F A, McCreary Jr J P. 2001. The monsoon circulation of the In-dian Ocean. Prog Oceanogr, 51(1): 1-123
    Srinivas B, Sarin M M. 2013. Atmospheric deposition of N, P and Fe to the Northern Indian Ocean: implications to C- and N-fixation. Sci Total Environ, 456-457: 104-114
    Srinivas B, Sarin M M, Sarma V V S S. 2011. Atmospheric dry depos-ition of inorganic and organic nitrogen to the Bay of Bengal: im-pact of continental outflow. Mar Chem, 127(1-4): 170-179
    Suess E. 1980. Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature, 288(5788): 260-263
    Suh S S, Park M, Hwang J, et al. 2014. Distinct patterns of marine bac-terial communities in the South and North Pacific Oceans. J Mi-crobiol, 52(10): 834-841
    Treusch A H, Vergin K L, Finlay L A, et al. 2009. Seasonality and ver-tical structure of microbial communities in an ocean gyre. ISME J, 3(10): 1148-1163
    Ward A C, Bora N. 2006. Diversity and biogeography of marine actin-obacteria. Curr Opin Microbiol, 9(3): 279-286
    Whitman W B, Coleman D C, Wiebe W J. 1998. Prokaryotes: the un-seen majority. Proc Natl Acad Sci U S A, 95(12): 6578-6583
    Wilkins D, van Sebille E, Rintoul S R, et al. 2013. Advection shapes Southern Ocean microbial assemblages independent of dis-tance and environment effects. Nat Commun, 4: 2457, doi: 10.1038/ncomms3457
    Woebken D, Lam P, Kuypers M M M, et al. 2008. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. En-viron Microbiol, 10(11): 3106-3119
    Wu Houbo, Guo Yatao, Wang Guanghua, et al. 2011. Composition of bacterial communities in deep-sea sediments from the South China Sea, the Andaman Sea and the Indian Ocean. Afr J Mi-crobiol Res, 5(29): 5273-5283
    Yuan Jun, Lai Qiliang, Zheng Tianling, et al. 2009. Novosphingobium indicum sp. Nov., a polycyclic aromatic hydrocarbon-degrad-ing bacterium isolated from a deep-sea environment. Int J Syst Evol Microbiol, 59(8): 2084-2088
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1242) PDF downloads(1173) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return