WANG Guansuo, ZHAO Chang, XU Jiangling, QIAO Fangli, XIA Changshui. Verification of an operational ocean circulation-surface wave coupled forecasting system for the China's seas[J]. Acta Oceanologica Sinica, 2016, 35(2): 19-28. doi: 10.1007/s13131-016-0810-4
Citation: WANG Guansuo, ZHAO Chang, XU Jiangling, QIAO Fangli, XIA Changshui. Verification of an operational ocean circulation-surface wave coupled forecasting system for the China's seas[J]. Acta Oceanologica Sinica, 2016, 35(2): 19-28. doi: 10.1007/s13131-016-0810-4

Verification of an operational ocean circulation-surface wave coupled forecasting system for the China's seas

doi: 10.1007/s13131-016-0810-4
  • Received Date: 2015-07-20
  • Rev Recd Date: 2015-09-21
  • An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas (OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to (1/24)° from the global model with (1/2)° resolution. Besides, daily remote sensing sea surface temperature (SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth (MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores (SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value (more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.
  • Bathen K H. 1972. On the seasonal changes in the depth of the mixed layer in the North Pacific Ocean. Journal of Geophysical Re-search, 77: 7138-7150
    Belkin I M, Filyushkin B N. 1986. Seasonal Variability of thermal structure of oceanic upper layer in the POLYMODE area. Okeanologiya, 26(2): 204-211
    Brassington G B, Pugh T, Spillman C, et al. 2007. BLUElink> develop-ment of operational oceanography and servicing in Australia. Journal of Research and Practice in Information Technology, 39(2): 151-164
    de Boyer Montégut C, Madec G, Fischer A S, et al. 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. Journal of Geophysical Research, 109: C12003, doi: 10.1029/2004JC002378
    Egbert G D, Bennett A F, Foreman M G G. 1994. TOPEX/Poseidon tides estimated using a global inverse model. Journal of Geo-physical Research, 99(C12): 24821-24852
    Gentemann C L. 2007. Global 9 km multi-satellite, multi-sensor sea surface temperatures from MODIS, AMSR-E, and TMI. In: American Geophysical Union, Spring Meeting 2007, abstract #OS34A-05
    Holte J, Talley L. 2009. A new algorithm for finding mixed layer depths with applications to Argo data and subantarctic mode water formation. Journal of Atmospheric and Oceanic Techno-logy, 26: 1920-1939
    Hurlburt H E, Brassington G B, Yann D, et al. 2009. High-resolution global and basin-scale ocean analyses and forecasts. Oceano-graphy, 22(3): doi: 10.5670/oceanog.2009.70
    Lin Xiaopei, Xie Shangping, Chen Xinping, et al. 2006. A well-mixed warm water column in the central Bohai Sea in summer: Ef-fects of tidal and surface wave mixing. Journal of Geophysical Research, 111(C11): doi: 10.1029/2006JC003504
    Lorbacher K, Dommenget D, Niiler P P, et al. 2006. Ocean mixed lay-er depth: A subsurface proxy of ocean-atmosphere variability. Journal of Geophysical Research, 111: C07010, doi: 10.1029.2003JC002157
    Lü Xinggang, Qiao Fangli, Xia Changshui, et al. 2006. Upwelling off Yangtze River estuary in summer. Journal of Geophysical Re-search, 111(C11), doi: 10.1029/2005JC003250
    Matsuno T, Lee J S, Shimizu M, et al. 2006. Measurements of the tur-bulent energy dissipation rate . and an evaluation of the disper-sion process of the Changjiang Diluted Water in the East China Sea. Journal of Geophysical Research, 111(C11): doi: 10.1029/2005JC003196
    Monterey G I, deWitt L M. 2000. Seasonal variability of global mixed layer depth from WOD98 temperature and salinity profiles. NOAA-TM-NMFS-SWFSC-296, U.S. Dep. Of Commerce, Na-tional Marine Fisheries Service, Pacific Grove, CA 93950
    Murphy A H. 1988. Skill Scores based on the mean square error and their relationships to the correlation coefficient. Monthly Weather Review, 116(12): 2417-2424
    Murphy A H. 1993. What is a good forecast? An essay on the nature of goodness in weather forecasting. Weather and Forecasting, 8(2): 281-293
    Qiao Fangli, Ma Jian, Yang Yongzeng, et al. 2004a. Simulation of the temperature and salinity along 36°N in the Yellow Sea with a wave-current coupled model. Journal of the Korean Society of Oceanography, 39: 35-45
    Qiao Fangli, Wang Guansuo, Lü Xingang, et al. 2011a. Drift character-istics of green macroalgae in the Yellow Sea in 2008 and 2010. Chinese Science Bulletin, 56(21): 2236-2242
    Qiao Fangli, Wang Guansuo, Zhao Wei, et al. 2011b. Predicting the spread of nuclear radiation from the damaged Fukushima Nuc-lear Power Plant. Chinese Science Bulletin, 56(18): 1890-1896
    Qiao Fangli, Xia Changshui, Shi Jianwei, et al. 2004b. Seasonal variab-ility of thermocline in the Yellow Sea. Chinese Journal of Oceanology and Limnology, 22(3): 299-305
    Sun Yujuan, Qiao Fangli, Wang Guansuo, et al. 2009. Forecast Opera-tion and verification of MASNUM Surface Wave Numerical Model. Advances in Marine Science (in Chinese), 27(3): 281-294
    Usui N, Ishizaki S, Fujii Y, et al. 2006. Meteorological Research Insti-tute multivariate ocean variational estimaton (MOVE) system: Some early results. Advances in Space Research, 37(4): 806-822
    Wang Guansuo, Qiao Fangli, Yang Yongzeng. 2007. Study on parallel algorithm for MPI-based LAGFD-WAM numerical wave model. Advances in Marine Science (in Chinese), 25(4): 401-407
    Wang Guansuo, Qiao Fangli. 2008. Ocean temperature responses to Typhoon Mstsa in the East China Sea. Acta Oceanologica Sin-ica, 27(4): 26-38
    Wang Guansuo, Qiao Fangli, Xia Changshui. 2010. Parallelization of a coupled wave-circulation model and its application. Ocean Dy-namics, 60(2): 331-339
    Xia Changshui, Chen Xianyao, Qiao Fangli, et al. 2003. C grid nesting technique and its application in simulating the ocean wave propagation. Advances in Marine Science (in Chinese), 21(4): 401-406
    Xia Changshui, Qiao Fangli, Yang Yongzeng, et al. 2006. Three-di-mensional structure of the summer circulation in the Yellow Sea from a wave-tide circulation coupled model. Journal of Geophysical Research, 111(C11): doi: 10.1029/2005JC003218
    Xia Changshui, Qiao Fangli, Zhang Qinghua, et al. 2004a. Numerical modelling of the quasi-global ocean circulation based on POM. Journal of Hydrodynamics, Ser B, 16(5): 537-543
    Xia Changshui, Qiao Fangli, Zhang Mengning, et al. 2004b. Simula-tion of double cold cores of the 35°N section in the Yellow Sea with a wave-tide-circulation coupled model. Chinese Journal of Oceanology and Limnology, 22(3): 292-298
    Yang Yongzeng, Qiao Fangli, Zhao Wei, et al. 2005. MASNUM ocean wave numerical model in spherical coordinates and its applica-tion. Acta Oceanologica Sinica, 22(2): 1-7
    Yuan Yeli, Hua Feng, Pan Zengdi, et al. 1991. LAGDF-WAM numeric-al wave model-I. Basic physical model. Acta Oceanologica Sin-ica, 10(4): 483-488
  • Relative Articles

  • Cited by

    Periodical cited type(17)

    1. Xianbiao Kang, Haijun Song, Zhanshuo Zhang, et al. A transformer-based method for correcting significant wave height numerical forecasting errors. Frontiers in Marine Science, 2024, 11 doi:10.3389/fmars.2024.1374902
    2. Quan Jin, Xingjie Jiang, Feng Hua, et al. GWSM4C: A global wave surrogate model for climate simulation based on a convolutional architecture. Ocean Engineering, 2024, 309: 118458. doi:10.1016/j.oceaneng.2024.118458
    3. Bin Xiao, Fangli Qiao, Qi Shu, et al. Development and validation of a global 1∕32° surface-wave–tide–circulation coupled ocean model: FIO-COM32. Geoscientific Model Development, 2023, 16(6): 1755. doi:10.5194/gmd-16-1755-2023
    4. Xingjie Jiang, Botao Xie, Ying Bao, et al. Global 3-hourly wind-wave and swell data for wave climate and wave energy resource research from 1950 to 2100. Scientific Data, 2023, 10(1) doi:10.1038/s41597-023-02151-w
    5. Yan Jiang, Zengrui Rong, Pixue Li, et al. Modeling waves over the Changjiang River Estuary using a high-resolution unstructured SWAN model. Ocean Modelling, 2022, 173: 102007. doi:10.1016/j.ocemod.2022.102007
    6. Xingjie Jiang, Dalu Gao, Feng Hua, et al. An Improved Approach to Wave Energy Resource Characterization for Sea States with Multiple Wave Systems. Journal of Marine Science and Engineering, 2022, 10(10): 1362. doi:10.3390/jmse10101362
    7. Tricia A. Stadnyk, A. Tefs, M. Broesky, et al. Changing freshwater contributions to the Arctic. Elementa: Science of the Anthropocene, 2021, 9(1) doi:10.1525/elementa.2020.00098
    8. Youngjin Choi, Youngmin Park, Minbum Choi, et al. A Fine Grid Tide-Wave-Ocean Circulation Coupled Model for the Yellow Sea: Comparison of Turbulence Closure Schemes in Reproducing Temperature Distributions. Journal of Marine Science and Engineering, 2021, 9(12): 1460. doi:10.3390/jmse9121460
    9. Zhenya Song, Ying Bao, Danqi Zhang, et al. Centuries of monthly and 3-hourly global ocean wave data for past, present, and future climate research. Scientific Data, 2020, 7(1) doi:10.1038/s41597-020-0566-8
    10. Fangli Qiao, Guansuo Wang, Somkiat Khokiattiwong, et al. China published ocean forecasting system for the 21st-Century Maritime Silk Road on December 10, 2018. Acta Oceanologica Sinica, 2019, 38(1): 1. doi:10.1007/s13131-019-1365-y
    11. Fangli Qiao, Guansuo Wang, Liping Yin, et al. Modelling oil trajectories and potentially contaminated areas from the Sanchi oil spill. Science of The Total Environment, 2019, 685: 856. doi:10.1016/j.scitotenv.2019.06.255
    12. Xuehai Liu, Xinming Pu, Donglian Luo, et al. Model assessment of nutrient removal via planting Sesuvium portulacastrum in floating beds in eutrophic marine waters: the case of aquaculture areas of Dongshan Bay. Acta Oceanologica Sinica, 2019, 38(12): 91. doi:10.1007/s13131-019-1492-5
    13. Liping Yin, Xiujuan Shan, Chang Zhao, et al. A model for the transportation and distribution of jellyfish Rhopilema esculentum for stock enhancement in the Liaodong Bay, China. Acta Oceanologica Sinica, 2019, 38(1): 90. doi:10.1007/s13131-019-1374-x
    14. Liping Yin, Min Zhang, Yuanling Zhang, et al. The long-term prediction of the oil-contaminated water from the Sanchi collision in the East China Sea. Acta Oceanologica Sinica, 2018, 37(3): 69. doi:10.1007/s13131-018-1193-5
    15. Guansuo Wang, Biao Zhao, Fangli Qiao, et al. Rapid intensification of Super Typhoon Haiyan: the important role of a warm-core ocean eddy. Ocean Dynamics, 2018, 68(12): 1649. doi:10.1007/s10236-018-1217-x
    16. Dongdong Yang, Hailong Yang, Luming Wang, et al. Performance Optimization of Marine Science and Numerical Modeling on HPC Cluster. PLOS ONE, 2017, 12(1): e0169130. doi:10.1371/journal.pone.0169130
    17. Fangli Qiao, Wei Zhao, Xunqiang Yin, et al. A Highly Effective Global Surface Wave Numerical Simulation with Ultra-High Resolution. SC16: International Conference for High Performance Computing, Networking, Storage and Analysis, doi:10.1109/SC.2016.4

    Other cited types(0)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1026) PDF downloads(1247) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return