LIU Danian, SHI Ping, SHU Yeqiang, YAO Jinglong, WANG Dongxiao, SUN Lu. Assimilating temperature and salinity profiles using Ensemble Kalman Filter with an adaptive observation error and T-S constraint[J]. Acta Oceanologica Sinica, 2016, 35(1): 30-37. doi: 10.1007/s13131-016-0793-1
Citation: LIU Danian, SHI Ping, SHU Yeqiang, YAO Jinglong, WANG Dongxiao, SUN Lu. Assimilating temperature and salinity profiles using Ensemble Kalman Filter with an adaptive observation error and T-S constraint[J]. Acta Oceanologica Sinica, 2016, 35(1): 30-37. doi: 10.1007/s13131-016-0793-1

Assimilating temperature and salinity profiles using Ensemble Kalman Filter with an adaptive observation error and T-S constraint

doi: 10.1007/s13131-016-0793-1
  • Received Date: 2015-01-23
  • Rev Recd Date: 2015-05-11
  • Temperature (T) and salinity (S) profiles from conductivity-temperature-depth data collected during the Northern South China Sea Open Cruise from August 16 to September 13, 2008 are assimilated using Ensemble Kalman Filter (EnKF). An adaptive observational error strategy is used to prevent filter from diverging. In the meantime, aiming at the limited improvement in some sites caused by the T and S biases in the model, a T-S constraint scheme is adopted to improve the assimilation performance, where T and S are separately updated at these locations. Validation is performed by comparing assimilated outputs with independent in situ data (satellite remote sensing sea level anomaly (SLA), the OSCAR velocity product and shipboard ADCP). The results show that the new EnKF assimilation scheme can significantly reduce the root mean square error (RMSE) of oceanic T and S compared with the control run and traditional EnKF. The system can also improve the simulation of circulations and SLA.
  • loading
  • Anderson J L, Anderson S L. 1999. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon Wea Rev, 127(12): 2741-2758
    Blumberg A F, Mellor G L. 1987. A description of a three-dimensional coastal ocean circulation model. In: Heaps N S, ed. Three-dimensional Coastal Ocean Models, Coastal Estuarine Study. Washington, DC: AGU, 1-16
    Carton J A, Giese B S, Grodsky S A. 2005. Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J Geophys Res, 110(C9), doi: 10.1029/2004JC002817 Dee D P. 2005. Bias and data assimilation. Quart J Roy Meteorol Soc,131(613): 3323-3343
    Deng Ziwang, Tang Youmin, Wang Guihua. 2010. Assimilation of Argo temperature and salinity profiles using a bias-aware localized EnKF system for the Pacific Ocean. Ocean Modelling, 35(3): 187-205
    Desroziers G, Berre L, Chapnik B, et al. 2005. Diagnosis of observation, background and analysis-error statistics in observation space. Quart J Roy Meteorol Soc, 131(613): 3385-3396
    Evensen G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res, 99(C5): 10143-10162
    Evensen G. 2003. The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn, 53(4): 343-367
    Evensen G. 2004. Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn, 54(6): 539-560
    Han Guijun, Li Wei, Zhang Xuefeng, et al. 2011. A regional ocean reanalysis system for coastal waters of China and adjacent seas. Adv Atmos Sci, 28(3): 682-690
    Hong Bo, Wang Dongxiao. 2008. Sensitivity study of the seasonal mean circulation in the northern South China Sea. Adv Atmos Sci, 25(5): 824-840
    Houtekamer P L, Mitchell H L. 2001. A sequential ensemble Kalman filter for atmospheric data assimilation. Mon Wea Rev, 129(1): 123-137
    Houtekamer P L, Mitchell H L, Pellerin G, et al. 2005. Atmospheric data assimilation with an ensemble Kalman filter: results with real observations. Mon Wea Rev, 133(3): 604-620
    Leeuwenburgh O. 2007. Validation of an EnKF system for OGCM initialization assimilating temperature, salinity, and surface height measurements. Mon Wea Rev, 135(1): 125-139
    Li Hong, Kalnay E, Miyoshi T. 2009. Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter. Quart J Roy Meteor Soc, 135(639): 523-533
    Lyu G K, Wang Hui, Zhu Jiang, et al. 2014. Assimilating the alongtrack sea level anomaly into the regional ocean modeling system using the ensemble optimal interpolation. Acta Oceanologica Sinica, 33(7): 72-82
    Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems. Rev Geophys, 20(4): 851-875
    Mitchell H L, Houtekamer P L. 2000. An adaptive ensemble Kalman filter. Mon Wea Rev, 128(2): 416-433
    Oke P R, Schiller A. 2007a. Impact of Argo, SST, and altimeter data on an eddy-resolving ocean reanalysis. Geophys Res Lett, 34(19), doi: 10.1029/2007GL031549
    Oke P R, Sakov P, Corney S P. 2007b. Impacts of localisation in the EnKF and EnOI: experiments with a small model. Ocean Dyn, 57(1): 32-45
    Shu Yeqiang, Wang Dongxiao, Zhu Jiang, et al. 2011b. The 4-D structure of upwelling and Pearl River plume in the northern South China Sea during summer 2008 revealed by a data assimilation model. Ocean Modelling, 36(3-4): 228-241
    Shu Yeqiang, Zhu Jiang, Wang Dongxiao, et al. 2009. Performance of four sea surface temperature assimilation schemes in the South China Sea. Cont Shelf Res, 29(11-12): 1489-1501
    Shu Yeqiang, Zhu Jiang, Wang Dongxiao, et al. 2011a. Assimilating remote sensing and in situ observations into a coastal model of northern South China Sea using ensemble Kalman filter. Cont Shelf Res, 31(6): S24-S36
    Tsyrulnikov M D. 2005. Stochastic modelling of model errors: A simulation study. Quart J Roy Meteor Soc, 131(613): 3345-3371
    Wan Liying, Zhu Jiang, Bertino L, et al. 2008. Initial ensemble generation and validation for ocean data assimilation using HYCOM in the Pacific. Ocean Dyn, 58(2): 81-99
    Wang Dongxiao, Shu Yeqiang, Xue Huijie, et al. 2014. Relative contributions of local wind and topography to the coastal upwelling intensity in the northern South China Sea. J Geophys Res Oceans, 119(4): 2550-2567
    Wang Qiang, Wang Yunxia, Hong Bo, et al. 2011. Different roles of Ekman pumping in the west and east segments of the South China Sea Warm Current. Acta Oceanol Sin, 30(3): 1-13
    Whitaker J S, Hamill T M. 2002. Ensemble data assimilation without perturbed observations. Mon Wea Rev, 130(7): 1913-1924
    Wu Xinrong, Li Wei, Han Guijun, et al. 2014. A Compensatory Approach of the Fixed Localization in EnKF. Mon Wea Rev, 142(10): 3713-3733
    Xie Jiping, Zhu Jiang. 2010. Ensemble optimal interpolation schemes for assimilating Argo profiles into a hybrid coordinate ocean model. Ocean Modelling, 33(3-4): 283-298
    Zheng Fei, Zhu Jiang. 2008. Balanced multivariate model errors of an intermediate coupled model for ensemble Kalman filter data assimilation. J Geophys Res, 113(C7): C07002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1612) PDF downloads(937) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return