SUN Jia, ZUO Juncheng, LING Zheng, YAN Yunwei. Role of ocean upper layer warm water in the rapid intensification of tropical cyclones:A case study of typhoon Rammasun (1409)[J]. Acta Oceanologica Sinica, 2016, 35(3): 63-68. doi: 10.1007/s13131-015-0761-1
Citation: SUN Jia, ZUO Juncheng, LING Zheng, YAN Yunwei. Role of ocean upper layer warm water in the rapid intensification of tropical cyclones:A case study of typhoon Rammasun (1409)[J]. Acta Oceanologica Sinica, 2016, 35(3): 63-68. doi: 10.1007/s13131-015-0761-1

Role of ocean upper layer warm water in the rapid intensification of tropical cyclones:A case study of typhoon Rammasun (1409)

doi: 10.1007/s13131-015-0761-1
  • Received Date: 2015-07-13
  • Rev Recd Date: 2015-09-28
  • Rammasun intensified rapidly from tropical storm to super typhoon in the northern South China Sea (NSCS) before its landfall on Hainan Island. Analysis of observed data shows that the anomalous ocean upper layer warm water (WW) is important to the rapid intensification of Rammasun. During the period of Rammasun, sea surface temperature (SST) in the NSCS was much warmer than the climatological SST. The anomalous WW supplied more energy to Rammasun, resulting in its rapid intensification. Numerical simulations further confirm that the NSCS WW plays an important role in the rapid intensification of Rammasun. As the WW is removed, the intensification of Rammasun is only 25 hPa, which is 58.1% of that in the original SST-forced run.
  • loading
  • Black P G, Holland G J. 1995. The boundary layer of tropical cyclone Kerry (1979). Mon Wea Rev, 123(7):2007-2028
    Cangialosi J P, Franklin J L. 2014. 2013 National Hurricane Center forecast verification report. NOAA/NWS/NCEP/National Hur-ricane Center
    Chan J C L, Duan Yihong, Shay L K. 2001. Tropical cyclone intensity change from a simple ocean-atmosphere coupled model. J At-mos Sci, 58(2):154-172
    DeMaria M, Pickle J D. 1988. A simplified system of equations for simulation of tropical cyclones. J Atmos Sci, 45(10):1542-1554
    Duan Yihong, Wu Rongsheng, Yu Runling, et al. 2013. Numerical simulation of changes in tropical cyclone intensity using a coupled air-sea model. Acta Meteorol Sin, 27(5):658-672
    Elsberry R L, Lambert T D B, Boothe M A. 2007. Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Wea Forecasting, 22(4):747-762
    Emanuel K A. 1986. An air-sea interaction theory for tropical cyc-lones. Part I:steady-state maintenance. J Atmos Sci, 43(6):585-605
    Evans J L. 1993. Sensitivity of tropical cyclone intensity to sea surface temperature. J Climate, 6(6):1133-1140
    Kaplan J, DeMaria M. 2003. Large-scale characteristics of rapidly in-tensifying tropical cyclones in the North Atlantic basin. Wea Forecasting, 18(6):1093-1108
    Large W G, Pond S. 1982. Sensible and latent heat flux measurements over the ocean. J Phys Oceanogr, 12(5):464-482
    Lin I I, Black P, Price J F, et al. 2013. An Ocean coupling potential in-tensity index for tropical cyclones. Geophys Res Lett, 40(9):1878-1882
    Lin I I, Pun I F, Wu C C. 2009. Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II:Depend-ence on translation speed. Mon Wea Rev, 137(11):3744-3757
    Lin I I, Wu C C, Emanuel K A, et al. 2005. The interaction of super-typhoon maemi (2003) with a warm Ocean eddy. Mon Wea Rev, 133(9):2635-2649
    Lin I I, Wu C C, Pun I F, et al. 2008. Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I:Ocean features and the category 5 typhoons' intensification. Mon Wea Rev, 136(9):3288-3306
    Malkus J S, Riehl H. 1960. On the dynamics and energy transforma-tions in steady-state hurricanes. Tellus, 12(1):1-20
    Rotunno R, Emanuel K A. 1987. An air-Sea interaction theory for tropical cyclones. Part II:evolutionary study using a nonhydro-static axisymmetric numerical model. J Atmos Sci, 44(3):542-561
    Schade L R, Emanuel K A. 1999. The ocean's effect on the intensity of tropical cyclones:Results from a simple coupled atmosphere-Ocean model. J Atmos Sci, 56(4):642-651
    Sun Yuan, Zhong Zhong, Ha Yao, et al. 2013. The dynamic and ther-modynamic effects of relative and absolute sea surface temper-ature on tropical cyclone intensity. Acta Meteorol Sin, 27(1):40-49
    Wang Y, Wu C C. 2004. Current understanding of tropical cyclone structure and intensity changes-a review. Meteorol Atmos Phys, 87(4):257-278
    Wang Bin, Zhou X. 2008. Climate variation and prediction of rapid in-tensification in tropical cyclones in the western North Pacific. Meteorol Atmos Phys, 99(1-2):1-16
    Willoughby H E. 1995. Mature structure and evolution. In:Elsberry R L, ed. Global Perspectives on Tropical Cyclones. Geneva. Switzerland:World Meteorological Organization Rep, 21-62
    Wu Liguang, Wang Bin, Braun S A. 2005. Impacts of air-Sea interac-tion on tropical cyclone track and intensity. Mon Wea Rev, 133(11):3299-3314
    Xu Jing, Wang Yuqing. 2010. Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J Atmos Sci, 67(6):1831-1852
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1617) PDF downloads(1101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return