Citation: | SHEN Zheqi, ZHANG Xiangming, TANG Youmin. Comparison and combination of EAKF and SIR-PF in the Bayesian filter framework[J]. Acta Oceanologica Sinica, 2016, 35(3): 69-78. doi: 10.1007/s13131-015-0757-x |
Ambadan J T, Tang Youmin. 2011. Sigma-point particle filter for parameter estimation in a multiplicative noise environment. Journal of Advances in Modeling Earth Systems, 3(4):M12005
|
Anderson J L. 2001. An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review, 129(12):2884-2903
|
Anderson J L, Anderson S L. 1999. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimila-tions and forecasts. Monthly Weather Review, 127(12):2741-2758
|
Arulampalam M S, Maskell S, Gordon N, et al. 2002. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174-188
|
Bengtsson T, Snyder C, Nychka D. 2003. Toward a nonlinear en-semble filter for high-dimensional systems. Journal of Geo-physical Research, 108(D24):8775
|
Bishop C H, Etherton B J, Majumdar S J. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I:Theoretical aspects. Monthly Weather Review, 129(3):420-436
|
Bocquet M, Pires C A, Wu Lin. 2010. Beyond gaussian statistical mod-eling in geophysical data assimilation. Monthly Weather Re-view, 138(8):2997-3023
|
Botev Z I, Grotowski J F, Kroese D P. 2010. Kernel density estimation via diffusion. The Annals of Statistics, 38(5):2916-2957
|
Burgers G, van Leeuwen P J, Evensen G. 1998. Analysis scheme in the ensemble Kalman filter. Monthly Weather Review, 126(6):1719-1724
|
Cappé O, Godsill S J, Moulines E. 2007. An overview of existing meth-ods and recent advances in sequential Monte Carlo. Proceed-ings of the IEEE, 95(5):899-924
|
Chorin A J, Morzfeld M, Tu X. 2010. Implicit particle filters for data assimilation. Communications in Applied Mathematics and Computational Science, 5(2):221-240
|
Crisan D, Doucet A. 2002. A survey of convergence results on particle filtering methods for practitioners. IEEE Transactions on Signal Processing, 50(3):736-746
|
Doucet A, De Freitas N, Gordon N. 2001. Sequential Monte Carlo Methods in Practice. New York:Springer
|
Evensen G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to fore-cast error statistics. Journal of Geophysical Research:Oceans (1978-2012), 99(C5):10143-10162
|
Frei M, Künsch H R. 2013. Bridging the ensemble Kalman and particle filters. Biometrika, 100(4):781-800
|
Gordon N J, Salmond D J, Smith A F M. 1993. Novel approach to non-linear/non-Gaussian Bayesian state estimation. IEE Proceed-ings F Radar and Signal Processing, 140(2):107-113
|
Han Guijun, Zhu Jiang, Zhou Guangqing. 2004. Salinity estimation using the T-S relation in the context of variational data assimil-ation. Journal of Geophysical Research:Oceans (1978-2012), 109(C3):C03018
|
Houtekamer P L, Mitchell H L, Pellerin G, et al. 2005. Atmospheric data assimilation with an ensemble Kalman filter:Results with real observations. Monthly Weather Review, 133(3):604-620
|
Jazwinski A H. 1970. Stochastic Processes and Filtering Theory. New York:Academic Press, 1-376
|
Kalman R E. 1960. A new approach to linear filtering and prediction problems. Journal of basic Engineering, 82(1):35-45
|
Klinker E, Rabier F, Kelly G, et al. 2000. The ECMWF operational im-plementation of four-dimensional variational assimilation. III:Experimental results and diagnostics with operational config-uration. Quarterly Journal of the Royal Meteorological Society, 126(564):1191-1215
|
Knuth D E. 2013. Art of Computer Programming, Volume 4, Fascicle 4:Generating All Trees-History of Combinatorial Generation. Boston:Addison-Wesley
|
Le Dimet F X, Talagrand O. 1986. Variational algorithms for analysis and assimilation of meteorological observations:theoretical as-pects. Tellus A, 38(2):97-110
|
Le Gland F, Monbet V, Tran V-D. 2009. Large sample asymptotics for the ensemble Kalman filter. In:Crisan D, ed. The Oxford Hand-book of Nonlinear Filtering. Oxford:Oxford University Press, 598-634
|
Li Hong, Kalnay E, Miyoshi T, et al. 2009. Accounting for model er-rors in ensemble data assimilation. Monthly Weather Review, 137(10):3407-3419
|
Lorenz E N. 1963. Deterministic nonperiodic flow. Journal of the At-mospheric Sciences, 20(2):130-141
|
Mahfouf J F, Rabier F. 2000. The ECMWF operational implementa-tion of four-dimensional variational assimilation:II. Experi-mental results with improved physics. Quarterly Journal of the Royal Meteorological Society, 126(564):1171-1190
|
Miller R N, Ghil M, Gauthiez F. 1994. Advanced data assimilation in strongly nonlinear dynamical systems. Journal of the Atmo-spheric Sciences, 51(8):1037-1056
|
Morzfeld M, Chorin A J. 2012. Implicit particle filtering for models with partial noise, and an application to geomagnetic data as-similation. Nonlinear Processes in Geophysics, 19(3):365-382
|
Musso C, Oudjane N, Le Gland F. 2001. Improving regularised particle filters. In:Doucet A, de Freitas N, Gordon N, eds. Se-quential Monte Carlo Methods in Practice. New York:Springer, 247-271
|
Nakano S, Ueno G, Higuchi T. 2007. Merging particle filter for se-quential data assimilation. Nonlinear Processes in Geophysics, 14(4):395-408
|
Papadakis N, Mémin E, Cuzol A, et al. 2010. Data assimilation with the weighted ensemble Kalman filter. Tellus A, 62(5):673-697
|
Rabier F, J.rvinen H, Klinker E, et al. 2000. The ECMWF operational implementation of four-dimensional variational assimilation:I. Experimental results with simplified physics. Quarterly Journal of the Royal Meteorological Society, 126(564):1143-1170
|
Rezaie J, Eidsvik J. 2012. Shrinked (1-α) ensemble Kalman filter and α Gaussian mixture filter. Computational Geosciences, 16(3):837-852
|
Shen Zheqi, Tang Youmin. 2015. A modified ensemble Kalman particle filter for non-Gaussian systems with nonlinear meas-urement functions. Journal of Advances in Modeling Earth Sys-tems, 7(1):50-66
|
Shu Yeqiang, Zhu Jiang, Wang Dongxiao, et al. 2009. Performance of four sea surface temperature assimilation schemes in the South China Sea. Continental Shelf Research, 29(11-12):1489-1501
|
Shu Yeqiang, Zhu Jiang, Wang Dongxiao, et al. 2011. Assimilating re-mote sensing and in situ observations into a coastal model of northern South China Sea using ensemble Kalman filter. Con-tinental Shelf Research, 31(6):S24-S36
|
Snyder C, Bengtsson T, Bickel P, et al. 2008. Obstacles to high-dimen-sional particle filtering. Monthly Weather Review, 136(12):4629-4640
|
Tang Youmin, Ambandan J, Chen Dake. 2014. Nonlinear measure-ment function in the ensemble Kalman filter. Advances in At-mospheric Sciences, 31(3):551-558
|
van Leeuwen P J. 2009. Particle filtering in geophysical systems. Monthly Weather Review, 137(12):4089-4114
|
van Leeuwen P J. 2010. Nonlinear data assimilation in geosciences:an extremely efficient particle filter. Quarterly Journal of the Royal Meteorological Society, 136(653):1991-1999
|
van Leeuwen P J. 2011. Efficient nonlinear data-assimilation in geo-physical fluid dynamics. Computers & Fluids, 46(1):52-58
|
Whitaker J S, Hamill T M. 2002. Ensemble data assimilation without perturbed observations. Monthly Weather Review, 130(7):1913-1924
|
Zhang S, Anderson J L. 2003. Impact of spatially and temporally vary-ing estimates of error covariance on assimilation in a simple at-mospheric model. Tellus A, 55(2):126-147
|
Zheng Fei, Zhu Jiang. 2008. Balanced multivariate model errors of an intermediate coupled model for ensemble Kalman filter data assimilation. Journal of Geophysical Research:Oceans (1978-2012), 113(C7):C07002
|