CHOI Youngjin. Comparative simulation study of effects of eddy-topography interaction in the East/Japan Sea deep circulation[J]. Acta Oceanologica Sinica, 2015, 34(7): 1-18. doi: 10.1007/s13131-015-0693-1
Citation: CHOI Youngjin. Comparative simulation study of effects of eddy-topography interaction in the East/Japan Sea deep circulation[J]. Acta Oceanologica Sinica, 2015, 34(7): 1-18. doi: 10.1007/s13131-015-0693-1

Comparative simulation study of effects of eddy-topography interaction in the East/Japan Sea deep circulation

doi: 10.1007/s13131-015-0693-1
  • Received Date: 2014-05-27
  • Rev Recd Date: 2014-10-10
  • In this study the structure and seasonal variations of deep mean circulation in the East/Japan Sea (EJS) were numerically simulated using a mid-resolution ocean general circulation model with two different parameterizations for the eddy-topography interaction (ETI). The strong deep mean circulations observed in the EJS are well reproduced when using the ETI parameterizations. The seasonal variability in the EJS deep layer is shown by using ETI parameterization based on the potential vorticity approach, while it is not shown in the statistical dynamical parameterization. The driving mechanism of the strong deep mean currents in the EJS are discussed by investigating the effects of model grids and parameterizations. The deep mean circulation is more closely related to the baroclinic process and potential vorticity than it is to the wind driven circulation.
  • loading
  • Chapman D C, Haidvogel D B. 1992. Formation of Taylor caps over a tall isolated seamount in a stratified ocean. Geophysical & Astrophysical Fluid Dynamics, 64(1-4): 31-65
    Charney J G. 1947. The dynamics of long waves in a baroclinic westerly current. J Meteor, 4(5): 136-162
    Choi B H, Kim K O, Eum H M. 2002. Digital bathymetric and topographic data for neighboring seas of Korea. J Korean Soc Coastal Ocean Eng (in Korean), 14: 41-50
    Choi Y J, Yoon J-H. 2010. Structure and seasonal variability of the deep mean circulation of the East Sea (Sea of Japan). J Oceanogr, 66(3): 349-361
    Crosby D S, Breaker L C, Gemmill W H. 1993. A proposed definition for vector correlation in geophysics: theory and application. J Atmos Oceanic Technol, 10(3): 355-367
    Danchenkov M A, Riser S C, Yoon J-H. 2003. Deep currents of the central Sea of Japan. Pacific Oceanogr, 1: 6-11
    Dewar W K. 1998. Topography and barotropic transport control by bottom friction. J Mar Res, 56: 295-328
    Eady E T. 1949. Long waves and cyclone waves. Tellus, 1(3): 33-52
    Eby M, Holloway G. 1994. Grid transformation for incorporating the Arctic in a global ocean model. Climate Dyn, 10(4-5): 241-247
    Gent P R, McWilliams J C. 1990. Isopycnal mixing in ocean circulation models. J Phys Oceanogr, 20(1): 150-155
    Greatbatch R J. 1998. Exploring the relationship between eddy-induced transport velocity, vertical momentum transfer, and the isopycnal flux of potential vorticity. J Phys Oceanogr, 28(3): 422-432
    Greatbatch R J, Li Guoqing. 2000. Alongslope mean flow and an associated upslope bolus flux of tracer in a parameterization of mesoscale turbulence. Deep-Sea Res Pt I, 47(4): 709-735
    Hanawa K, Mitsudera M. 1985. About constructing of daily mean values of ocean data. Coastal Res Note, 23: 79-87
    Hirose N, Kawamura H, Lee H J, et al. 2007. Sequential forecasting of the surface and subsurface conditions in the Japan Sea. J Oceanogr, 63(3): 467-481
    Hogan P J, Hurlburt H E. 2000. Impact of upper ocean-topographical coupling and isopycnal outcropping in Japan/East Sea models with 1/8°to 1/64°resolution. J Phys Oceanogr, 30(10): 2535- 2561
    Holloway G. 1992. Representing topographic stress for large-scale ocean models. J Phys Oceanogr, 22(9): 1033-1046
    Holloway G. 2008. Observing global ocean topostrophy. J Geophys Res, 113(C7): C07054, doi: 10.1029/2007JC004635
    Holloway G, Sou T, Eby M. 1995. Dynamics of circulation of the Japan Sea. J Mar Res, 53(4): 539-569
    Holloway G, Wang Zeliang. 2009. Representing eddy stress in an Arctic Ocean model. J Geophys Res, 114: C06020, doi: 10.1029/ 2008JC005169
    Huppert H E. 1975. Some remarks on the initiation of inertial Taylor columns. J Fluid Mech, 67: 397-412
    Ishizaki H, Motoi T. 1999. Reevaluation of the Takano-Oonishi scheme for momentum advection on bottom relief in ocean models. J Atmos Oceanic Technol, 16(12): 1994-2010
    Isoda Y, Saitoh S I. 1993. The northward intruding eddy along the East coast of Korea. J Oceanogr, 49(4): 443-458
    Kim Y J. 2007. A study on the Japan/East Sea oceanic circulation using an extra-fine resolution model [dissertation]. Fukuoka: Kyushu University
    Kim K, Kim K-R, Kim D-H, et al. 2001. Warming and structural changes in the East (Japan) Sea: A clue to future changes in global oceans? Geophys Res Let, 28(17): 3293-3296
    Kim C H, Yoon J-H. 1996. Modeling of the wind-driven circulation in the Japan Sea using a reduced gravity model. J Oceanogr, 52(3): 359-373
    Kitani K. 1987. Direct current measurement of the Japan Sea Proper Water (in Japanese). Nihonkai-ku Suisan Shiken Kenkyuu Renraku News, Japan Sea National Fisheries Research Institute, 341: 1-6
    Lee H J, Yoon J-H, Kawamura H, et al. 2003. Comparison of RIAMOM and MOM in modeling the East Sea/Japan Sea circulation. Ocean and Polar Research, 25(3): 287-302
    Luchin V A, Manko A N, Mosyagina S Y, et al. 2003. Hydrography of water masses (in Russian). In: Terziev F S, ed. Hydrometeorology and Hydrochemistory of Seas. Sankt-Petersburg: Hydrometeoizdat, 8: 157-256
    Maltrud M, Holloway G. 2008. Implementing biharmonic neptune in a global eddying ocean model. Ocean Modelling, 21(1-2): 22-34
    Merryfield W, Scott R. 2007. Bathymetric influence on mean currents in two high-resolution near-global ocean models. Ocean Modelling, 16(1-2): 76-94
    Mesinger F, Arakawa A. 1976. Numerical methods used in atmospheric models, Volume 1. WMO/ICSU Joint Organizing Committee, GARP Publication Series No. 17
    Minobe S, Sako A, Nakamura M. 2004. Interannual to interdecadal variability in the Japan sea based on a new gridded upper water temperature dataset. J Phys Oceanogr, 34(11): 2382-2397
    Mori K, Matsuno T, Senjyu T. 2005. Seasonal/spatial variations of the near-inertial oscillations in the deep water of the Japan Sea. J Oceanogr, 61(4): 761-773
    NCAR. 1989. NCAR ASCII Version of ETOPO5 earth surface elevation. Data Support Section, NCAR
    Noh Y. 1996. Dynamics of diurnal thermocline formation in the oceanic mixed layer. J Phys Oceanogr, 26(10): 2183-2195
    Oort A H, Ascher S C, Levitus S, et al. 1989. New estimates of the available potential energy in the World Ocean. J Geophys Res, 94(C3): 3187-3200
    Penduff T, Juza M, Brodeau L, et al. 2010. Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales. Ocean Sci, 6: 269-284
    Sakai R, Yoshikawa Y. 2005. Numerical experiments on the formation mechanism of abyssal current in the Japan Sea. Engineer Sci Rep Kyushu Univ (in Japanese), 26(4): 423-430
    Salmon R, Holloway G, Hendershott M C. 1976. The equilibrium statistical mechanics of simple quasi-geostrophic models. J Fluid Mech, 75(4): 691-703
    Senjyu T, Shin H R, Yoon J-H, et al. 2005. Deep flow field in the Japan/East Sea as deduced from direct current measurements. Deep-Sea Res Pt II, 52(11-13): 1726-1741
    Senjyu T, Sudo H. 1996. Interannual variation of the upper portion of the japan sea proper water and its probable cause. J Oceanogr, 52(1): 27-42
    Seung Y-H, Yoon J-H. 1995. Robust diagnostic modeling of the Japan sea circulation. J Oceanogr, 51(4): 421-440
    Shin H R, Shin C W, Kim C, et al. 2005. Movement and structural variation of warm eddy WE92 for three years in the Western East/Japan Sea. Deep-Sea Res Pt II, 52(11-13): 1742-1762
    Takano K. 1974. A General Circulation Model For the World Ocean. Numerical Simulation of Weather and Climate Technical Report. Los Angeles: Univ of California, 47
    Takematsu M, Nagano Z, Ostrovski A, et al. 1999. Direct measurements of deep currents in the northern Japan Sea. J Oceanogr, 55(2): 207-216
    Takikawa T, Yoon J-H. 2005. Volume transport through the Tsushima straits estimated from sea level difference. J Oceanogr, 61(4): 699-708
    Taylor G I. 1917. Motion of solids in fluids when the motion is not irrotational. Proc Roy Soc, A93: 99-113
    Teague W J, Tracey K L, Watts D R, et al. 2005. Observed deep circulation in the Ulleung Basin. Deep-Sea Res Pt II, 52(11-13): 1802-1826
    Wallcraft A J, Kara A B, Hurlburt H E. 2005. Convergence of Laplacian diffusion versus resolution of an ocean model. Geophys Res Lett, 32(7), doi: 10.1029/2005GL022514
    Webb D J, de Cuevas S J, Richmond C S. 1998. Improved advection schemes for ocean models. J Atmos Oceanic Technol, 15(5): 1171-1187
    Wessel P, Smith W H F. 1998. New, improved version of generic mapping tools released. EOS Trans AGU, 79: 579
    Yoon J-H, Kawamura H. 2002. The formation and circulation of the intermediate water in the Japan Sea. J Oceanogr, 58(1): 197-211
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1220) PDF downloads(717) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return