Citation: | LIU Peng, WANG Zhongtao, LI Xinzhong, CHAN Andrew. Calibration and validation of a sand model considering the effects of wave-induced principal stress axes rotation[J]. Acta Oceanologica Sinica, 2015, 34(7): 105-115. doi: 10.1007/s13131-015-0655-2 |
Chen Yunmin, Lai Xianghua, Ye Yincan, et al. 2005. Wave-induced pore water pressure in marine cohesive soils. Haiyang Xuebao (in Chinese), 24(4): 138-145
|
Cuéllar P, Mira P, Pastor M, et al. 2014. A numerical model for the transient analysis of offshore foundations under cyclic loading. Computers and Geotechnics, 59: 75-86
|
Dewoolkar M M, Chan A H C, Ko H-Y, et al. 2009. Finite element simulations of seismic effects on retaining walls with liquefiable backfills. International Journal for Numerical and Analytical Methods in Geomechanics, 33(6): 791-816
|
Dunn S L, Vun P L, Chan A H C, et al. 2006. Numerical modeling of wave-induced liquefaction around pipelines. Journal of Waterway, Port, Coastal, and Ocean Engineering, 132(4): 276-288
|
Gräbe P J, Clayton C R I. 2014. Effects of principal stress rotation on resilient behavior in rail track foundations. Journal of Geotechnical and Geoenvironmental Engineering, 140(2): 04013010, doi: 10.1061/(ASCE)GT.1943-5606.0001023
|
Ishihara K, Towhata I. 1983. Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils and Foundations, 23(4): 11-26
|
Jafarian Y, Towhata I, Baziar M H, et al. 2012. Strain energy based evaluation of liquefaction and residual pore water pressure in sands using cyclic torsional shear experiments. Soil Dynamics and Earthquake Engineering, 35: 13-28
|
Jiang Changbo, Cheng Yongzhou, Chang Liuhong, et al. 2012. The numerical study of wave-induced pore water pressure response in highly permeable seabed. Acta Oceanologica Sinica, 31(6): 46-55
|
Konstadinou M, Georgiannou V N. 2013. Cyclic behaviour of loose anisotropically consolidated Ottawa sand under undrained torsional loading. Géotechnique, 63(13): 1144-1158
|
Liang Bingchen, Zhao Hongping, Li Huajun, et al. 2012. Numerical study of three-dimensional wave-induced longshore current's effects on sediment spreading of Huanghe river mouth. Acta Oceanologica Sinica, 31(2): 129-138
|
Ling H I, Liu Huabei. 2003. Pressure-level dependency and densification behavior of sand through generalized plasticity model. Journal of Engineering Mechanics, 129(8): 851-860
|
Liu Huabei, Zou Degao. 2013. Associated generalized plasticity framework for modeling gravelly soils considering particle breakage. Journal of Engineering Mechanics, 139(5): 606-615
|
Luan Maotian, Xu Chengshun, Guo Ying, et al. 2005. An experimental study on the deformation characteristics of saturated loose sand under coupled static and dynamic combined stress conditions. China Civil Engineering Journal (in Chinese), 38(3): 81-86
|
Manzanal D, Fernández-Merodo J A, Pastor M. 2006. Generalized plasticity theory revisited: new advances and applications. In: Proceeding of 17 th European Young Geotechnical Engineer's Conference. Zagreb, Croatia, 20-22
|
Manzanal D, Merodo J A F, Pastor M. 2011a. Generalized plasticity state parameter-based model for saturated and unsaturated soils. Part 1: Saturated state. International Journal for Numerical and Analytical Methods in Geomechanics, 35(12): 1347-1362
|
Manzanal D, Pastor M, Merodo J A F. 2011b. Generalized plasticity state parameter-based model for saturated and unsaturated soils. Part II: Unsaturated soil modeling. International Journal for Numerical and Analytical Methods in Geomechanics, 35(18): 1899-1917
|
Mroz Z, Zienkiewicz O C. 1984. Uniform formulation of constitutive equations for clay and sand. In: Deasi C S, Gallangher R H, eds. Mechanics of Engineering Materials. New York: Wiley Press, 415-450
|
Rodriguez N M, Lade P V. 2014. Non-coaxiality of strain increment and stress directions in cross-anisotropic sand. International Journal of Solids and Structures, 51(5): 1103-1114
|
Pan Dongzhi, Wang Lizhong, Pan Cunhong, et al. 2007. Experimental investigation on the wave-induced pore pressure around shallowly embedded pipelines. Haiyang Xuebao (in Chinese), 26(5): 125-135
|
Pastor M, Zienkiewicz O C, Chan A H C. 1990. Generalized plasticity and the modelling of soil behavior. International Journal for Numerical and Analytical Methods in Geomechanics, 14(3): 151-190
|
Pastor M, Zienkiewicz O C, Leung K H. 1985. Simple model for transient soil loading in earthquake analysis: II. Non-associative models for sands. International Journal for Numerical and Analytical Methods in Geomechanics, 9(5): 477-498
|
Perić D, Ayari M A. 2002a. Influence of Lode's angle on the pore pressure generation in soils. International Journal of Plasticity, 18(8): 1039-1059
|
Perić D, Ayari M A. 2002b. On the analytical solutions for the threeinvariant Cam clay model. International Journal of Plasticity, 18(8): 1061-1082
|
Sassa S, Sekiguchi H. 2001. Analysis of wave-induced liquefaction of sand beds. Géotechnique, 51(2): 115-126
|
Stickle M M, De La Fuente P, Oteo C, et al. 2013. A modelling framework for marine structure foundations with example application to vertical breakwater seaward tilt mechanism under breaking wave loads. Ocean Engineering, 74: 155-167
|
Towhata I, Ishihara K. 1985. Undrained strength of sand undergoing cyclic rotation of principal stress axes. Soils and Foundations, 25(2): 135-147
|
Wei Kuangmin, Zhu Sheng. 2013. A generalized plasticity model to predict behaviors of the concrete-faced rock-fill dam under complex loading conditions. European Journal of Environmental and Civil Engineering, 17(7): 579-597
|
Xiao Junhua, Juang C H, Wei Kai, et al. 2014. Effects of principal stress rotation on the cumulative deformation of normally consolidated soft clay under subway traffic loading. Journal of Geotechnical and Geoenvironmental Engineering, 140(4): 04012046, doi: 10.1061/(ASCE)GT.1943-5606.0001069
|
Xu Chengshun, Luan Maotian, He Yang, et al. 2006. Effect of intermediate principal stress on undrained behavior of saturated loose sands under monotonic shearing. Rock and Soil Mechanics (in Chinese), 27(5): 689-693
|
Yang Zhongxuan, Li X S, Yang J. 2007. Undrained anisotropy and rotational shear in granular soil. Géotechnique, 57(4): 371-384
|
Yoshimine M, Ishihara K, Vargas W. 1998. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand. Journal of the Japanese Geotechnical Society: Soils and Foundations, 38(3): 179-188
|
Zienkiewicz O C, Leung K H, Pastor M. 1985. Simple model for transient soil loading in earthquake analysis: I. Basic model and its application. International Journal for Numerical and Analytical Methods in Geomechanics, 9(5): 453-476
|
Zienkiewicz O C, Mroz Z. 1984. Generalized plasticity formulation and applications to geomechanics. In: Deasi C S, Gallangher R H, eds. Mechanics of Engineering Materials. New York: Wiley Press, 655-679
|