CHEN Xiaona, SU Rongguo, BAI Ying, SHI Xiaoyong, YANG Rujun. Discrimination of marine algal taxonomic groups based on fluorescence excitation emission matrix, parallel factor analysis and CHEMTAX[J]. Acta Oceanologica Sinica, 2014, 33(12): 192-205. doi: 10.1007/s13131-014-0576-5
Citation: CHEN Xiaona, SU Rongguo, BAI Ying, SHI Xiaoyong, YANG Rujun. Discrimination of marine algal taxonomic groups based on fluorescence excitation emission matrix, parallel factor analysis and CHEMTAX[J]. Acta Oceanologica Sinica, 2014, 33(12): 192-205. doi: 10.1007/s13131-014-0576-5

Discrimination of marine algal taxonomic groups based on fluorescence excitation emission matrix, parallel factor analysis and CHEMTAX

doi: 10.1007/s13131-014-0576-5
  • Received Date: 2013-09-14
  • Rev Recd Date: 2014-01-09
  • An in vivo three-dimensional fluorescence method for the determination of algae community structure was developed by parallel factor analysis (PARAFAC) and CHEMTAX. The PARAFAC model was applied to fluorescence excitation-emission matrix (EEM) of 60 algae species belonging to five divisions and 11 fluorescent components were identified according to the residual sum of squares and specificity of the composition profiles of fluorescent. By the 11 fluorescent components, the algae species at different growth stages were classified correctly at the division level using Bayesian discriminant analysis (BDA). Then the reference fluorescent component ratio matrix was constructed for CHEMTAX, and the EEM-PARAFAC-CHEMTAX method was developed to differentiate algae taxonomic groups. The correct discrimination ratios (CDRs) when the fluorometric method was used for single-species samples were 100% at the division level, except for Bacillariophyta with a CDR of 95.6%. The CDRs for the mixtures were above 94.0% for the dominant algae species and above 87.0% for the subdominant algae species. However, the CDRs of the subdominant algae species were too low to be unreliable when the relative abundance estimated was less than 15.0%. The fluorometric method was tested using the samples from the Jiaozhou Bay and the mesocosm experiments in the Xiaomai Island Bay in August 2007. The discrimination results of the dominant algae groups agreed with microscopy cell counts, as well as the subdominant algae groups of which the estimated relative abundance was above 15.0%. This technique would be of great aid when low-cost and rapid analysis is needed for samples in a large batch. The fluorometric technique has the ability to correctly identify dominant species with proper abundance both in vivo and in situ.
  • loading
  • Andersen C M, Bro R. 2003. Practical aspects of PARAFAC modeling of fluorescence excitation-emission data. J Chemom, 17(4): 200- 215
    Arrigo K R. 2005. Marine microorganisms and global nutrient cycles. Nature, 437(7057): 349-355
    Barber C B, Dobkin D P, Huhdanpaa H. 1996. The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4): 469-483
    Beutler M, Wiltshire K H, Arp M, et al. 2003. A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1604(1): 33-46
    Bosco M V, Larrechi M S. 2007. PARAFAC and MCR-ALS applied to the quantitative monitoring of the photodegradation process of polycyclic aromatic hydrocarbons using three-dimensional excitation emission fluorescent spectra Comparative results with HPLC. Talanta, 71(4): 1703-1709
    Bro R. 1997. PARAFAC tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 38(2): 149-171
    Bro R. 1999. Exploratory study of sugar production using fluorescence spectroscopy and multi-way analysis. Chemometrics and Intelligent Laboratory Systems, 46(2): 133-147
    Chen J Q, Guo R X. 2012. Access the toxic effect of the antibiotic cefradine and its UV light degradation products on two freshwater algae. Journal of Hazardous Materials, 209-210: 520-523
    Drinovec L, Flander-Putrle V, Knez M, et al. 2011. Discrimination of marine algal taxonomic groups using delayed fluorescence spectroscopy. Environmental and Experimental Botany, 73: 42-48
    Fellman J B, Miller M P, Cory R M, et al. 2009. Characterizing dissolved organic matter using PARAFAC modeling of fluorescence spectroscopy: A comparison of two models. Environmental Science & Technology, 43(16): 6228-6234
    Gameiro C, Cartaxana P, Brotas V. 2007. Environmental drivers of phytoplankton distribution and composition in Tagus Estuary, Portugal. Estuarine, Coastal and Shelf Science, 75(1-2): 21-34
    Guillard R R L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Culture of Marine Invertebrate Animals. New York: Springer, 29-60
    Harshman R A. 1970. Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics, 16: 1-84
    Havskum H, Schlüter L, Scharek R, et al. 2004. Routine quantification of phytoplankton groups-microscopy or pigment analyses. Marine Ecology Progress Series, 273: 31-42
    Harwati T U, Willke T, Vorlop K D. 2012. Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp. Bioresource Technology, 121: 54-60
    Hu Yuxi, Li Xibing. 2012. Bayes discriminant analysis method to identify risky of complicated goaf in mines and its application. Transactions of Nonferrous Metals Society of China, 22(2): 425-431
    Jeffrey S W, Hallegraeff G M. 1980. Studies of phytoplankton species and photosynthetic pigments in a warm core eddy of East Australian Current: I. Summer populations. Marine Ecology Progress Series, 3: 285-294
    Khullar S, Michael A, Correa N, et al. 2011. Wavelet-based fMRI analysis: 3-D denoising, signal separation, and validation metrics. Neuroimage, 54(4): 2867-2884
    Latasa M. 2007. Improving estimations of phytoplankton class abundances using CHEMTAX. Marine Ecology Progress Series, 329: 13-21
    Lee T, Tsuzuki M, Takeuchi T, et al. 1995. Quantitative determination of cyanobacteria in mixed phytoplankton assemblages by an in vivo fluorimetric method. Analytica Chimica Acta, 302(1): 81-87
    Li Yumei, Anderson-Sprecher R. 2006. Facies identification from well logs: A comparison of discriminant analysis and naïve Bayes classifier. Journal of Petroleum Science and Engineering, 53(3- 4): 149-157
    Liu Xianli, Tao Shu, Deng Nansheng. 2005. Synchronous-scan fluorescence spectra of Chlorella vulgaris solution. Chemosphere, 60(11): 1550-1554
    Mackey M D, Mackey D J, Higgins H W, et al. 1996. CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Marine Ecology Progress Series, 144: 265-283
    Nie Jinfang, Wu Hailong, Zhang Shurong, et al. 2010. Self-weighted alternating normalized residue fitting algorithm with application to quantitative analysis of excitation-emission matrix fluorescence data. Analytical Methods, 2: 1918-1926
    Oldham P B, Zillioux E J, Walker I M. 1985. Spectral “fingerprinting” of phytoplankton populations by two-dimensional fluorescence and Fourier-transform-based pattern recognition. Journal of Marine Research, 43:893-906
    Paerl H W, Huisman J. 2009. Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports, 1(1): 27-37
    Rodriguez F, Varela M, Zapata M. 2002. Phytoplankton assemblages in the Gerlache and Bransfield Straits (Antarctic Peninsula) determined by light microscopy and CHEMTAX analysis of HPLC pigment data. Deep-Sea Research Part II: Topical Studies in Oceanography, 49(4-5): 723-747
    Ruivo M, Amorim A, Cartaxana P. 2011. Effects of growth phase and irradiance on phytoplankton pigment ratios: implications for chemotaxonomy in coastal waters. Journal of Plankton Research, 33(7): 1012-1022
    Schlüter L, Lauridsen T L, Krogh G, et al. 2006. Identification and quantification of phytoplankton groups in lakes using new pigment ratios—a comparison between pigment analysis by HPLC and microscopy. Freshwater Biology, 51(8): 1474-1485
    Schlüter L, Møhlenberg F, Havskum H, et al. 2000. The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios. Marine Ecology Progress Series, 192: 49-63
    Sheng Guoping, Yu Hanqing. 2006. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research, 40(6): 1233-1239
    Stedmon C A, Bro R. 2008. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 6: 572-579
    Stedmon C A, Markager S. 2005. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnology and Oceanography, 50(2): 686-697
    Stedmon C A, Markager S, Bro R. 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82(3-4): 239-254
    Wang Zhiwei, Wu Zhichao, Tang Shujuan. 2009. Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research, 43(6): 1533-1540
    Wright S W, Thomas D P, Marchant H J, et al. 1996. Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the 'CHEMTAX' matrix factorisation program. Marine Ecology Progress Series, 144: 285-298
    Wright S W, van den Enden R L, Pearce I, et al. 2010. Phytoplankton community structure and stocks in the Southern Ocean (30- 801E) determined by CHEMTAX analysis of HPLC pigment signatures. Deep-Sea Research Part II, 57: 758-778
    Zelen M, Severo N C. 1970. Probability functions. In: Abramowitz M, Stegun I A, eds. Handbook of Mathematical Functions. New York: Dover Publications, 925-995
    Zepp R G, Sheldon W M, Moran M A. 2004. Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitationemission matrices. Marine Chemistry, 89(1-4): 15-36
    Zhang Fang, Su Rongguo, He Jianfeng, et al. 2010. Identifying phytoplankton in seawater based on discrete excitation-emission fluorescence spectra. Journal of Phycology, 46(2): 403-411
    Zhang Fang, Su Rongguo, Wang Xiulin, et al. 2009. A fluorometric method for the discrimination of harmful algal bloom species developed by wavelet analysis. Journal of Experimental Marine Biology and Ecology, 368(1): 37-43
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1503) PDF downloads(2137) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return